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FIG. S1. (a) Side view of phosphorene oxide (PO) and (b) a simple quasi one-dimensional model

structure corresponding to PO. Masses m1 and m2 represent phosphorous and oxygen atoms,

respectively, and the spring constants k, k′ and k′′ do the P−P, P−O, and O−O bonds, respectively.

In the limit of k′′ → 0, m2 may be mapped into the “flexible” oxygen atom in PO. The box

depicts the s-th unit cell with the lattice constant a of the mode structure. To simplify the model

calculation, we only allowed m1 and m2 to move horizontally.

To investigate the role of the “flexible” oxygen atom in PO, we devised the model structure

composed of two masses m1 and m2 connected with three different types of springs k, k′, k′′ as

shown in Fig. S1. With the generalized coordinates us and vs assigned to the displacements

of the s-th m1 and m2, the equation of motion is given by

m1
d2us

dt2
= k(us+1 + us−1 − 2us)− k′(us − vs) (S1)

m2
d2vs
dt2

= k′′(vs+1 + vs−1 − 2vs) + k′(us − vs). (S2)

We look for a traveling wave solution with different amplitudes u and v,

us = ueisqae−iωt, vs = veisqae−iωt.

Thus, Eqs. (S1) and (S2) become

−m1ω
2u = k(eiqa + e−iqa − 2)u− k′(u− v)

−m2ω
2v = k′′(eiqa + e−iqa − 2)u + k′(u− v).
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These coupled equations can be solved by setting the determinant to be zero, or

m1m2ω
4 + ω2

{
−4(m2k + m1k

′′) sin2
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2

)
− k′(m1 + m2)

}
+ 16kk′′ sin4

(qa
2

)
+ 4k′(k + k′′) sin2

(qa
2

)
= 0,

and thus the two solutions are
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(S3)

These solution can be confirmed in a special condition of m1 = m2 = m to be

ω2
± =

1

m

[
2 (k + k′′) sin2

(qa
2

)
+ k′ ±

√
4 (k − k′′)2 sin4

(qa
2

)
+ k′2

]
,

and further to be, when k′′ = k,

ω2
± =

1

m

[
4k sin2

(qa
2

)
+ k′ ± k′

]
.

The lower solution ω− simply corresponds to the acoustic phonon branch of the monatomic

chain system.

To understand role of the flexible oxygen atom corresponding to m2 and k′′, we plotted the

phonon dispersion relations of our model system with various parameters shown in Fig. S2.

As clearly seen in the figure, the smaller k′′, the lower the acoustic phonon frequency. Thus,

the flexibility of oxygen atoms in PO may lead to the softening of acoustic phonon modes

resulting in the reduction in thermal conductivity.
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FIG. S2. Calculated phonon dispersion relations of the model system shown in Fig. S1. ω± given in

Eq. S3 represent the optical (+) and acoustic (−) branches, which were plotted with m2 = 0.5m1,

k′ = 0.3k, while changing k′′ from 0.01k to 0.5k.
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