Supplementary Information

Low Lattice Thermal Conductivity of a Two-Dimensional Phosphorene Oxide

Seungjun Lee, ${ }^{1}$ Seoung-Hun Kang, ${ }^{1, *}$ and Young-Kyun Kwon ${ }^{1, \dagger}$
${ }^{1}$ Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul, 02447, Korea

(Dated: February 24, 2019)

FIG. S1. (a) Side view of phosphorene oxide (PO) and (b) a simple quasi one-dimensional model structure corresponding to PO. Masses m_{1} and m_{2} represent phosphorous and oxygen atoms, respectively, and the spring constants k, k^{\prime} and $k^{\prime \prime}$ do the $\mathrm{P}-\mathrm{P}, \mathrm{P}-\mathrm{O}$, and $\mathrm{O}-\mathrm{O}$ bonds, respectively. In the limit of $k^{\prime \prime} \rightarrow 0, m_{2}$ may be mapped into the "flexible" oxygen atom in PO. The box depicts the s-th unit cell with the lattice constant a of the mode structure. To simplify the model calculation, we only allowed m_{1} and m_{2} to move horizontally.

To investigate the role of the "flexible" oxygen atom in PO, we devised the model structure composed of two masses m_{1} and m_{2} connected with three different types of springs $k, k^{\prime}, k^{\prime \prime}$ as shown in Fig. S1. With the generalized coordinates u_{s} and v_{s} assigned to the displacements of the s-th m_{1} and m_{2}, the equation of motion is given by

$$
\begin{align*}
& m_{1} \frac{d^{2} u_{s}}{d t^{2}}=k\left(u_{s+1}+u_{s-1}-2 u_{s}\right)-k^{\prime}\left(u_{s}-v_{s}\right) \tag{S1}\\
& m_{2} \frac{d^{2} v_{s}}{d t^{2}}=k^{\prime \prime}\left(v_{s+1}+v_{s-1}-2 v_{s}\right)+k^{\prime}\left(u_{s}-v_{s}\right) . \tag{S2}
\end{align*}
$$

We look for a traveling wave solution with different amplitudes u and v,

$$
u_{s}=u e^{i s q a} e^{-i \omega t}, \quad v_{s}=v e^{i s q a} e^{-i \omega t} .
$$

Thus, Eqs. (S1) and (S2) become

$$
\begin{aligned}
& -m_{1} \omega^{2} u=k\left(e^{i q a}+e^{-i q a}-2\right) u-k^{\prime}(u-v) \\
& -m_{2} \omega^{2} v=k^{\prime \prime}\left(e^{i q a}+e^{-i q a}-2\right) u+k^{\prime}(u-v) .
\end{aligned}
$$

These coupled equations can be solved by setting the determinant to be zero, or

$$
\begin{aligned}
m_{1} m_{2} \omega^{4}+\omega^{2}\left\{-4\left(m_{2} k+m_{1} k^{\prime \prime}\right) \sin ^{2}\left(\frac{q a}{2}\right)\right. & \left.-k^{\prime}\left(m_{1}+m_{2}\right)\right\} \\
& +16 k k^{\prime \prime} \sin ^{4}\left(\frac{q a}{2}\right)+4 k^{\prime}\left(k+k^{\prime \prime}\right) \sin ^{2}\left(\frac{q a}{2}\right)=0
\end{aligned}
$$

and thus the two solutions are

$$
\begin{align*}
& \omega_{ \pm}^{2}=2\left(\frac{k}{m_{1}}+\frac{k^{\prime \prime}}{m_{2}}\right) \sin ^{2}\left(\frac{q a}{2}\right)+\frac{k^{\prime}}{2}\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \\
& \pm \sqrt{4\left(\frac{k}{m_{1}}-\frac{k^{\prime \prime}}{m_{2}}\right)^{2} \sin ^{4}\left(\frac{q a}{2}\right)+\frac{k^{\prime 2}}{4}\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)^{2}+2 k^{\prime} \sin ^{2}\left(\frac{q a}{2}\right)\left(\frac{k}{m_{1}^{2}}+\frac{k^{\prime \prime}}{m_{2}^{2}}-\frac{k+k^{\prime \prime}}{m_{1} m_{2}}\right)} \tag{S3}
\end{align*}
$$

These solution can be confirmed in a special condition of $m_{1}=m_{2}=m$ to be

$$
\omega_{ \pm}^{2}=\frac{1}{m}\left[2\left(k+k^{\prime \prime}\right) \sin ^{2}\left(\frac{q a}{2}\right)+k^{\prime} \pm \sqrt{4\left(k-k^{\prime \prime}\right)^{2} \sin ^{4}\left(\frac{q a}{2}\right)+k^{\prime 2}}\right]
$$

and further to be, when $k^{\prime \prime}=k$,

$$
\omega_{ \pm}^{2}=\frac{1}{m}\left[4 k \sin ^{2}\left(\frac{q a}{2}\right)+k^{\prime} \pm k^{\prime}\right] .
$$

The lower solution ω_{-}simply corresponds to the acoustic phonon branch of the monatomic chain system.

To understand role of the flexible oxygen atom corresponding to m_{2} and $k^{\prime \prime}$, we plotted the phonon dispersion relations of our model system with various parameters shown in Fig. S2. As clearly seen in the figure, the smaller $k^{\prime \prime}$, the lower the acoustic phonon frequency. Thus, the flexibility of oxygen atoms in PO may lead to the softening of acoustic phonon modes resulting in the reduction in thermal conductivity.

* Current address: Korea Institute for Advanced Study (KIAS), Seoul 02455, Korea
\dagger Corresponding author. E-mail: ykkwon@khu.ac.kr

FIG. S2. Calculated phonon dispersion relations of the model system shown in Fig. S1. $\omega_{ \pm}$given in Eq. S3 represent the optical (+) and acoustic (-) branches, which were plotted with $m_{2}=0.5 m_{1}$, $k^{\prime}=0.3 k$, while changing $k^{\prime \prime}$ from $0.01 k$ to $0.5 k$.

