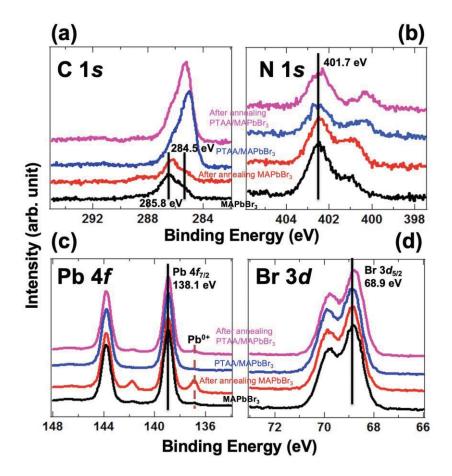
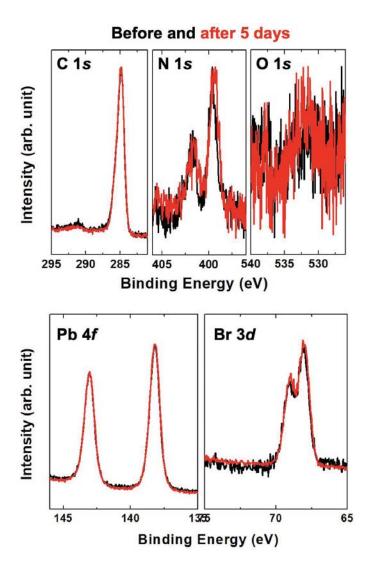

## **Supplementary Information**

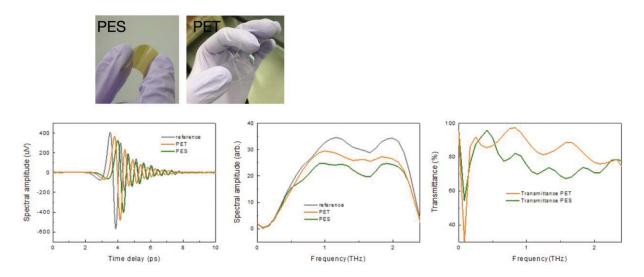
Unique phonon modes of a CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> hybrid perovskite film without the influence of defect structures: an attempt toward a novel THz-based application


Inhee Maeng<sup>1+</sup>, Seungjun Lee<sup>2+</sup>, Hiroshi Tanaka<sup>3+</sup>, Jung-Ho Yun<sup>4</sup>, Shenghao Wang<sup>5</sup>, Masakazu Nakamura<sup>3</sup>, Young-Kyun Kwon<sup>2\*</sup>, and Min-Cherl Jung<sup>6\*</sup>

- <sup>1</sup>YUHS-KRIBB, Medical Convergence Research Institute, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- <sup>2</sup>Department of Physics, Kyung Hee University, Seoul, 02447, Republic of Korea
- <sup>3</sup>Division of Materials Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan
- <sup>4</sup>School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, QLD 4027, Australia
- <sup>5</sup>Materials Genome Institute, Shanghai University, Shanghai, 200444, China
- <sup>6</sup>Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8577, Japan


S.Figure 1. The schematic of sequential vacuum evaporation method and the PET flexible substrate.




S.Figure 2. Core-level spectra of (a) C 1s, (b) N 1s, (c) Pb 4f, and Br 4d. There is no defectrelated chemical state except of  $CH_3NH_2$  molecular defect. We could not observe any O 1s trace.



S.Figure 3. XPS measurement of PTAA/MAPbBr<sub>3</sub>/PET before and after 5 days on the air. We could not find any significant contamination.



S.Figure 4. THz-TDS measurement for the PET and PES flexible substrates

