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The Anderson and midgap models are often used in the study of semiconductor heterojunctions, but for
van der Waals (vdW) vertical heterostructures they have shown only very limited success. Using the group-IV
monochalcogenide vertical heterostructures as a prototypical system, we propose a linear response model and
compare the effectiveness of these models in predicting density functional theory (DFT) band alignments, band
types, and band gaps. We show that the DFT band alignment is best predicted by the linear response model,
which falls in between the Anderson and midgap models. Our proposed model can be characterized by an
interface dipole α × (Em2 − Em1), where the linear response coefficient α = 0 and 1 corresponds to the Anderson
and midgap model, respectively, and Em is the midgap energy of the monolayer, which can be viewed as an
effective electronegativity. For group-IV monochalcogenides, we show that α = 0.34 best captures the DFT
band alignment of the vdW heterostructure, and we discuss the viability of the linear response model considering
other effects such as strains and band hybridization, and conclude with an application of the model to predict
experimental band alignments.
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I. INTRODUCTION

Energy band alignment in semiconductor heterostructures
is one of the most important properties in designing elec-
tronic and optoelectronic devices [1–5]. A great deal of work
has been directed towards the understanding of band discon-
tinuity at semiconductor heterojunction for several decades
since the 1970s [6–17]. These works span a wide spectrum,
with simple and physically motivated models that predict
bands lineup of heterostructure based on the electronic prop-
erties of its constituent bulk semiconductors [6,9,15,16],
while others approached it using elaborate first principle
self-consistent atomistic calculations based on density func-
tion theory (DFT), or semiempirical pseudopotential, or local
atomic orbitals methods [8,12–14]. These approaches have
facilitated the understanding and design of III–V and II–VI
semiconductor heterojunctions and played a crucial role in
providing insights to experimental measurements and devices.

Heterojunction band alignment refers to the relative band
edge energies of the respective semiconductors at the inter-
face. The most elementary model was provided by Anderson
[6,7], which states that the vacuum levels of the two semi-
conductors should be aligned on both sides of the junction.
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Hence, the conduction band offset is given by the difference
in electron affinities of the two materials and the valence band
offset is the sum of conduction band offset and band gap
difference. However, this model may not be well obeyed in
practice, due to formation of a charge dipole at the interface.
Studies of conventional bulk semiconductor heterostructures
have attributed the physical origin of this interface dipole
to various factors, which includes interface states [18,19],
gap states induced by wave function penetration [9], band
hybridization [20], among other effects. Compared to conven-
tional semiconductors, band alignments in atomically thin 2D
van der Waals (vdW) heterostructures remain poorly under-
stood.

During the past few years, several studies have been con-
ducted to study and predict the band alignments in vdW
heterostructures [20–38], particularly heterostructures made
by mechanical transfer [39]. These studies found limited suc-
cess of the Anderson model when compared to DFT results
and experimental measurements [37]. The discrepancies have
been ascribed to the band hybridization in heterostructure
[38], and quantum dipoles [20], and depends also on layer
thickness [40].

In this work, we propose a linear response model. If the
interlayer coupling is sufficiently weak, the heterostructure
is characterized simply by the dipole formed. As in other
models, our prediction is based on the properties of the
separate constituent monolayers. However, it contains one
additional parameter to describe the linear response. We focus
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on the family of group-IV monochalcogenides heterostruc-
tures as a prototypical system, which was shown to form
mechanically stable and rigid heterostructures [41]. Few-layer
group-IV monochalcogenides have been synthesized [42–44],
and their monolayers have been shown to be stable and
can be exfoliated from their bulk phase [45]. Because of
the reduced symmetry, they show piezoelectricity with large
ionic dielectric screening and piezotronics for energy harvest-
ing [46,47], anisotropic thermal and electrical conductivity
[48,49] with high thermoelectric efficiency [50,51], and topo-
logical electronic properties [52–54]. The understanding of
band alignments in these heterostructures would open new
opportunities for designing novel materials optimized for par-
ticular applications.

The organization of the paper is as follows. In Sec. II, we
introduce our proposed linear response model. In Sec. III,
we describe the atomic structure of group-IV monochalco-
genides monolayers and its heterostructures, the compu-
tational method, and the estimation of a linear response
coefficient for these materials. In Sec. IV, we review the
Anderson and midgap band models and compare them against
the proposed linear response model using DFT results as
a reference. In Sec. V, we survey the heterostructures of
the group-IV monochalcogenides family and demonstrate the
higher efficacy of our proposed linear response model in
predicting band gaps and band alignment types of 2D het-
erostructures, compared to the Anderson and midgap models.
In Sec. VI, as an application, we apply the linear response
model to predict band alignments of unstrained heterostruc-
tures, such as those formed by mechanical transfer techniques
[39]. Finally, Sec. VII sums up the conclusions of our study.

II. LINEAR RESPONSE MODEL

If we could bring together two monolayers without letting
them interact, and without allowing any charge transfer, then
the vacuum energy could serve as a reference: The conduction
band offset would be given by the difference in electron affin-
ity of the respective monolayers [6,7]. However, in general the
layers do interact, and there is some charge rearrangement,
leading to an overall dipole moment of the bilayer. An accu-
rate calculation of this dipole requires a full density function
calculation. This is not feasible for strictly incommensurate
structures, but some incommensurate structures (e.g., specific
rotations) can be well approximated using supercells that are
large but still tractable [36,55,56]. We therefore consider a
widely used approximation that each separate layer is charac-
terized by a “neutrality level” (here taken as the midgap), such
that the distance from the vacuum level to the neutrality level
is a measure of the electronegativity [10,57,58], and charge
moves toward the more electronegative layer. We also make a
second approximation of linearity, that the charge transfer and
resulting dipole are linear in the neutrality-level difference:

eVh = β(E ′
m2 − E ′

m1) (1)

where E ′
m1 and E ′

m2 are the midgap energies of the con-
stituent monolayers, and β is a dimensionless parameter to
be determined. If we write the midgap energy of the separate
monolayers, relative to vacuum, as Em1 and Em2, then their off-
set is given by the noninteracting (“Anderson model”) offset

plus this dipole:

E ′
m2 − E ′

m1 = (Em2 − Em1) − eVh. (2)

Solving Eqs. (1) and (2) self-consistently gives the linear
response model as

eVh = α(Em2 − Em1), (3)

where α = β/(β + 1). Note that the two limiting cases of α =
0 and 1 correspond to the well-known Anderson and midgap
band alignment models, respectively.

Neglecting charge transfer and dipole formation corre-
spond to β = 0, so α = 0, and the vacuum levels of two
semiconductors are aligned on either side of the junction. This
corresponds to the Anderson model. In the opposite limit,
where even a small offset gives a large dipole, we have β � 1,
giving α ≈ 1. Therefore vacuum dipole step of heterostructure
is equal and opposite to the difference in midgap energies
of constituent semiconductors. Then the final lineup has the
midgaps nearly aligned. This is the idea behind the midgap
or neutrality-level models proposed for bulk semiconductor
heterojunctions by Tejedor, Flores [15], and Tersoff [9].

Physically, β can be interpreted as an effective po-
larizability describing how the heterostructure responds to
electronegativity difference at the interface, and α is the self-
consistent linear response when nonzero β is included, as
described in Eqs. (1)–(3). As discussed previously, in the
context of bulk semiconductor interfaces, α reflects the in-
verse dielectric constant of materials [10]. In low-dimensional
systems, however, the response is not described simply by a
dielectric constant. Hence, we utilized first-principles DFT to
evaluate α of various heterostructures composed of group-IV
monochalcogenides as a demonstration.

III. DENSITY FUNCTIONAL CALCULATIONS

A. Atomic structures

Group-IV monochalcogenides have a chemical formula
of MX , where M and X are elements from group-IVA and
VIA of the periodic table, respectively. They belong to the
space group Pnma with an orthorhombic structure in their
bulk form. They have a puckered crystal structure similar
to the more commonly studied black phosphorous [59–61].
However, unlike black phosphorus, inversion symmetry in the
perpendicular direction of the layers is lost for the monolayer,
as shown in phosphorene oxides [62,63], and they belong
to the space group Pmn21 instead. The primitive unit cell
is rectangular with four basis atoms, two from each atomic
species. Each atom is covalently bonded to three neighbors
of the other atomic species forming zigzag configuration of
alternating atoms, and the bonds are typically softer along
the armchair direction [41]. The atomic configurations of
group-IV monochalcogenides vertical heterostructures are il-
lustrated in Figs. 1(a) and 1(b). The primitive unit cell of the
heterostructure is still rectangular with eight basis atoms and
its rectangular Brillouin zone (BZ) with the high symmetry
points is shown in Fig. 1(c). Puckered structure of group-IV
monochalcogenides is the most stable phase, with formation
energies comparable to single-layer MoS2 [64].
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FIG. 1. Group-IV monochalcogenides. (a) Side view and (b) top
view of the optimized atomic structure of group-IV monochalco-
genide heterostructure. The rectangular unit cell with in-plane lattice
vectors, �a and �b are indicated. (c) Corresponding Brillouin zone with
symmetry directions.

B. Computational method

We carried out first-principles DFT calculations as imple-
mented in the Vienna ab initio simulation package (VASP) [65].
The Perdew-Burke-Ernzerhof (PBE) functional was chosen
within the generalized gradient approximation (GGA) to treat
the exchange-correlation interaction of electrons [66]. The
electron-core interaction is described by projector augmented
wave (PAW) potentials [67], and vdW corrections have been
included in the calculations. The cutoff for plane-wave ex-
pansion is set to be 300 eV. A set of (21 × 21 × 1) k-point
sampling is used for BZ integration in k-space, following
the scheme proposed by Monkhorst-Pack [68]. Atomic po-
sitions were optimized using the conjugate gradient method,
where the total energy and atomic forces were minimized. The
energy convergence value between two consecutive steps of
10−6 eV was chosen and a maximum of Hellmann-Feynman
force of 1 meV/Å was allowed on each atom. Vacuum spacing
of at least 30 Å are added along the direction perpendicular to
the 2D atomic plane for the monolayers and heterostructure,
in order to avoid the interaction between adjacent super-
cells. To construct vdW heterostructure, we vertically stacked
free-standing monolayers on top of each other to make the het-
erostructures and relaxed the geometry to obtain the minimum
energy configurations. How we selected the lattice constants
of each heterostructure was described in the last paragraph of
Sec. III C and also in the Supplemental Material (SM) [69].
The vdW interactions were taken into account by the correc-
tion scheme of Grimme (DFT-D3) [70]. In addition to PBE
calculations which usually underestimate the band gaps of
semiconductors, for Sec. VI we carried out calculations using
HSE06 hybrid functional [71] for the free-standing monolay-
ers using the optimized structures obtained by PBE.

C. Monolayers to heterostructure

We first performed structure optimization of the nine free-
standing MX (M = Si, Ge, Sn; X = S, Se, Te) monolayers
and then calculated their electronic band structures. We found
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FIG. 2. Extracting linear response coefficient α. DFT vacuum
dipole step of heterostructures versus midgap energy difference be-
tween monolayers (as within the Anderson picture). Linear fitted line
with a slope α = 0.34 is indicated.

that all monolayers are indirect gap semiconductors with band
gaps ranging from 0.34 eV to 1.55 eV for PBE and 0.60 eV
to 2.18 eV for HSE06 calculations. The band edges values for
PBE and HSE06 calculations are presented in the SM [69].

The stacking and commensuration of the 2D heterostruc-
ture, however, requires more consideration as it depends
on the way it was prepared. For example, mechanical
exfoliation and transfer methods would typically produce in-
commensurate bilayer heterostructures with minimal strain
[39]. Chemical vapor deposition or molecular-beam epitaxy
growth, on the other hand, would admit heterostructures
that are commensurate, where the stacking configuration and
lattice constants are dictated by the growth conditions and
substrates [72–75]. Strains incurred would certainly have an
effect on the band alignment of the heterostructure [76].

To extract the linear response coefficient α, and to isolate
effects of layer interactions, we need to compare monolayers
and heterostructures with the same lattice constants. There-
fore for each pair MX and M ′X ′, we choose the in-plane
lattice constants a and b to be the larger of the respective
lattice constants of the relaxed free-standing monolayers.
Because SiS monolayer has significantly smaller lattice con-
stants compared to the other MX monolayers, we do not
include heterostructures with SiS in this work.

D. Extracting linear response coefficient

In general, α may be different for every bilayer. To give
a predictive model, we make the somewhat drastic approx-
imation that α is the same for all bilayers considered here.
Then we determine α by fitting to the bilayer dipoles calcu-
lated in DFT. Figure 2 shows the vacuum dipole step eVh,DFT

(reflecting the sheet dipole moment) of each heterostructure,
versus Em2 − Em1, the difference in midgap energy (relative
to vacuum) of the respective monolayers. A typical vacuum
step, and how that is extracted from DFT, is shown in Fig. S1
of the SM [69]. The layers are numbered so that Em2 − Em1

and thus eVh,DFT have positive values. The best linear fit for
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FIG. 3. Comparing energy band models. (a) Energy band alignment for two isolated 2D monolayers. According to the Anderson model,
the heterostructure is a type II with a band gap of 0.67 eV. The values for CBM, VBM, and midgap for the first monolayer, SiSe (blue color),
and the second monolayer, SnS (orange color), are presented. All energies are in eV. (b) Energy band alignment in the midgap model, where
midgap energies are aligned and energy bands of the second monolayer are shifted to the lower energies, creates a vacuum dipole step of eVh.
(c) Band model in the linear response model, where vacuum dipole is obtained by eVh = 0.34 × (Em2 − Em1) = 0.22 eV. This leads to a type
II heterostructure with a band gap of 0.89 eV, in great agreement with the DFT. (d) Energy band diagram for the DFT calculated SiSe-SnS
heterostructure with a vacuum dipole step of eVh,DFT. DFT band gap is 0.93 eV. The percentages represent the contribution of each layer to
the band edges. DFT band structure of isolated (e) SiSe, (f) SnS monolayers, and (g) SiSe-SnS heterostructure. CBM and VBM values are
indicated by dots. The midgap energies are illustrated by horizontal dashed lines. All energies are taken with respect to the vacuum level (for
the heterostructure, we used the highest vacuum level).

this set of materials corresponds to α = 0.34. This suggests
that the actual band alignment is intermediate between the
Anderson and midgap models. We examine the accuracy and
consequences in more detail in the subsequent sections. We
should note that for each family of 2D materials, a different α

is expected and can be determined using the same procedure.

IV. BAND ALIGNMENT MODELS

For bulk semiconductor heterostructures, the band lineups
are classified into three types [35]. In type I (straddling)
heterostructure, both conduction band minimum (CBM) and
valence band maximum (VBM) resides in the same semi-
conductor. For type II (staggered), the CBM and VBM of
the one semiconductor have higher energies than those of the
other. In type III (broken-gap), the CBM of one semiconductor
energetically falls below the VBM of the other semiconductor.
Since vdW heterostructures can have very weak hybridization
between the layers, we adopt the same classification here,
based on the monolayer bands shifted by the vacuum dipole.
This gives a model band alignment, valid in the limit of weak
hybridization between layers. In this way we can compare
various models to the DFT results.

Figure 3 shows a heterostructure formed by SiSe and
SnS monolayers. SiSe (SnS) monolayer band edges are

represented with blue (orange) lines in Figs. 3(a)–3(d), with
its CBM Ec1 (Ec2), and VBM Ev1 (Ev2), all with respect to the
vacuum level. DFT band structure of monolayers and their
heterostructure are presented in Figs. 3(e)–3(g), where CBM
and VBM are indicated in the plots. The midgap energies
of SiSe and SnS are denoted as Em1 and Em2, shown by
horizontal dashed lines. Notice that in this paper we use Eg

for the predicted band gaps of the heterostructures based on
the models and Eg,DFT for the DFT calculated band gaps for
the heterostructures.

The predicted band gap of the heterostructure, Eg, would be
given by the difference between the lowest lying conduction
band and the highest lying valence band. For the SiSe-SnS
heterostructure, band gap according to the Anderson model is
Eg = 0.67 eV, as shown in Fig. 3(a).

Figure 3(b) depicts the band alignment according to the
midgap model. Predicted band gap based on the midgap
model, Eg, is simply given by the smaller band gaps of the
two monolayers, which in this case would be Eg = 1.08 eV.
This overestimates the DFT calculated band gap of Eg,DFT =
0.93 eV, as shown in Fig. 3(d).

Figure 3(c) shows the energy band alignment in the
linear response model. As discussed in Sec. III D, lin-
ear response coefficient for group-IV monochalcogenides is
found to be 0.34, which results in a vacuum step of eVh =
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FIG. 4. Survey of band gaps across the models. (a) Comparison between the band gaps extracted from the Anderson model and that
computed from DFT, Eg,DFT. (b),(c) Same as (a) but for the midgap and linear response model, respectively.

0.34 × (−3.86 + 4.51) = 0.22 eV for the SiSe-SnS het-
erostructure. This lowering of the bands of SnS monolayer
gives a type II heterostructure with Eg = 0.89 eV. To deter-
mine the DFT band alignment, we assign each band edge
to SiSe or SnS according to its wave functions. As shown
in Fig. 3(d), CBM (VBM) is formed by 87% (10%) SiSe
contributions. Therefore, we assign the CBM and VBM of
the heterostructure to the SiSe and SnS monolayers, respec-
tively. This allows us to assign a type II band alignment in
DFT. Thus in this instance, the dipole, band gap, and band
type in the linear response model agree well with the DFT
calculations.

V. SURVEY OF MONOCHALCOGENIDES
HETEROSTRUCTURES

A. Band gaps

Following the procedures in Sec. IV, we obtained the
predicted band gaps of heterostructures for the group-IV
monochalcogenides heterostructures according to the Ander-
son, midgap, and linear response models, and compared them
against the DFT band gaps. The results are presented in Fig. 4,
where each heterostructure is color coded according to its
band alignment in the Anderson picture. Heterostructures
which are type I in the Anderson picture are automatically
type I in all three models, and these show good agreement

with the corresponding DFT values as indicated by the red
dots. We note that the band hybridization at the band edges in
the type I heterostructures studied in this work is weak, which
could be another indication of the great agreement between
the predicted and DFT band gaps.

Figure 4(a) shows that the Anderson model systematically
underestimates the band gaps for the majority of the het-
erostructures. For type III alignment, there is no band gap, and
the degree of band overlap is marked as a negative band gap
in Fig. 4(a). The midgap model, in contrast, systematically
overestimates the bilayer band gaps, and the linear response
model gives a balanced error, with better overall accuracy,
as shown in Figs. 4(b) and 4(c), respectively. To quantify
the accuracy, we calculated mean absolute error (MAE) be-
tween model predictions and DFT calculated band gaps,
1
n

∑n
i=1 |Eg − Eg,DFT|.

We obtained MAE of 0.18 eV and 0.20 eV for the An-
derson and midgap models, respectively, while the linear
response model MAE is only 0.10 eV. The results show that
our proposed linear response model is the most accurate in
predicting the band gaps for group-IV monochalcogenides
heterostructures. This is not surprising, since it incorporates
additional experimental information via α. But it is striking
that accuracy is improved by a factor of 2 using only a single
α value to describe systems with a wide range of band gaps,
spanning three rows of the periodic table.
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FIG. 5. Survey of the band alignment types. Comparison of band types for IV-VI heterostructures according to the Anderson, midgap,
linear response models, and DFT calculations. Band hybridization strength (H) displayed as a heatmap (top row).
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FIG. 6. Application of the linear response model. (a) HSE06
calculated band edges of free-standing group-IV monochalcogenides
monolayers, relative to the vacuum energy. CBM and VBM values
are indicated. An example: (b) Band lineup of SnSe-GeTe in the
Anderson and linear response models. SnSe and GeTe band edges
are illustrated by blue and orange colors, respectively. Vacuum dipole
step of 0.084 eV is computed from linear response model as illus-
trated, which yields a band gap of 1.139 eV for the heterostructure.
All energies are in eV.

B. Band alignments

We complete our survey of monochalcogenides het-
erostructures by comparing heterostructure band types ob-
tained from different models against DFT results, as shown
in Fig. 5. We determine the types of band alignment based on
the DFT results by comparing the wave function projections
to each layer at the CBM and VBM of heterostructures [see
Fig. 3(d)]. As shown in Fig. 5, the two heterostructures that
had type III band alignment in the Anderson model were
found to be either type I or II in the linear response model and
DFT calculations. Both the linear response model and DFT do
not show any type III, which by definition will be a semimetal
without a band gap. As mentioned before, the midgap model
always predicts type I heterostructures. In Fig. 5 we see that
the linear response model gives the same band type as DFT,
except for five heterostructures.

Strictly speaking, band offsets and band types are concepts
appropriate for interfaces between 3D semiconductors. These
concepts are useful for 2D systems only insofar as the hy-
bridization is weak. In order to quantify band hybridization

in our 2D heterostructures, we computed wave function pro-
jections to each layer of the heterostructures for all relevant
energy bands. From the wave function �n,k (�r) of band n and
k point corresponding to the CBM or VBM, we obtained the
projection of the wave function to the first layer as

φ1 =
∫ z0

zmin

dz
∫

2D
dxdy|�n,k (�r)|2, (4)

where zmin is the lower boundary of the supercell in the out-
of-plane direction and z0 is the midpoint position between two
layers. For the second layer, z0 and zmax are the lower and
upper integral limits, respectively. Now, we define a figure of
merit for band hybridization, H as

H = |φ1,c − 1/2|−1 + |φ1,v − 1/2|−1, (5)

where φ1,c and φ1,v are wave function projections of the first
monolayer to the CBM and VBM, respectively. A heat map
of H values for all heterostructures is summarized in Fig. 5,
where large H indicates strong band hybridization between
layers. We see that the linear response model is most likely
to predict incorrect band type for heterostructures with strong
band hybridization. This is reasonable, since strong hybridiza-
tion makes the assignment of band type less meaningful even
within DFT. In addition, since band hybridization results in
the formation of new bonding and antibonding states, it is rea-
sonable to expect that for cases with strong hybridization, the
predicted band gaps differ from the DFT band gaps. Indeed,
our results support this conjecture.

For example, GeS-SiTe and SnSe-GeTe are heterostruc-
tures with especially strong band hybridization. For these,
our linear response model fails to predict the correct band
type, and they also exhibit the largest difference between the
predicted and DFT band gaps. The results of this section
show that the midgap model is incapable of predicting band
type, and the Anderson model underestimates the band gap
significantly, but the linear response model correctly predicts
both band gap and band type of the selected heterostructure,
and it is indeed an improvement over the other two models as
compared to DFT.

VI. APPLICATION OF LINEAR RESPONSE MODEL

The ultimate goal is not only to understand the role of
dipole formation but to predict experimental lineups. For this
purpose, we should calculate the monolayer properties in
whatever state of strain occurs in the experiment and then shift
them by the dipole. A common case, and the simplest case, is
that both layers are unstrained. This occurs when individual
layers are mechanically exfoliated and combined. In this case,
the system is incommensurate, posing an obstacle for full DFT
calculations of the heterostructure.

For predicting experimental values, we would like to have
more accurate band gaps than are provided by DFT, which
systematically underestimates band gaps [77]. Hybrid density
functionals have been shown to improve the description of
band gap of semiconductors [78–81], so we use the HSE06
hybrid functional [79] here. Once we calculate the unstrained
monolayer properties within HSE06, we use those within the
linear response model to calculate the band lineup. We ne-
glect any change in the response coefficient associated with
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changing the strain state or going from DFT to HSE06. This
is reasonable, since in any case it is an approximation to use
a single value of α for the whole family of materials treated
here.

The calculated band edges of the relaxed monolayers
relative to their vacuum energies are shown in Fig. 6(a),
where maroon and yellow bars show conduction and valence
bands, respectively. From eVh = α × (Em2 − Em1), the vac-
uum dipole steps of the heterostructures can be computed for
any pair of these monolayers, using the value α = 0.34 de-
termined above. The band gap of the heterostructure is given
by Eg = min(Ec1, Ec2 − eVh) − max(Ev1, Ev2 − eVh), where
the second layer is always chosen to have higher midgap
energy (Em2) than the first one (Em1). We take SnSe and
GeTe monolayers as an example. The midgap energies of
SnSe and GeTe monolayers are Em1 = −3.865 and Em2 =
−3.619 eV, respectively [Fig. 6(b)]. Therefore, for this case
eVh = 0.34 × (−3.619 + 3.865) = 0.084 eV. Then, the band
gap of SnSe-GeTe heterostructure according to the linear re-
sponse model is given by Eg = 1.139 eV as illustrated. These
two monolayers form a type II heterostructure, as shown in
Fig. 6(b). Using the same approach, we obtained band gaps of
all the heterostructures. These results are listed in Table I of
SM [69].

Using the linear response model, the band gaps range from
0.17 eV for SiSe-SiTe to 1.51 eV for SnS-GeS heterostructure.
We found that only SnTe-GeTe, SnSe-GeTe, and SiSe-SiTe
are type II, while the other heterostructures are type I. These
results can be compared against experimental data based on
mechanically stacked vdW heterostructures, when those be-
come available.

It is reasonable to anticipate that the value of α varies
across different families of 2D materials. The survey of α

across all 2D materials will be an exhaustive effort, but it
is possible to extract a reasonable value of α from a small

subset of a family we are interested in. Our linear response
model can be applied to another family of 2D heterostructures,
for example, the MXenes [82,83] consisting of thousands of
possible bilateral heterostructures with the α value extracted
from a much smaller subset of the family.

VII. CONCLUSION

A simple linear response model allows us to predict the
electronic band gap of 2D vertical heterostructures using only
the constituent monolayers band edges. Tests using DFT and
idealized strain states demonstrate that the model provides
significant improvement relative to the popular Anderson and
midgap models. We also found that the model is most accu-
rate when band hybridization between the two monolayers is
small. In addition, by using more accurate HSE06 calculations
for free-standing monolayers, we predict the band gaps and
band types of the vertically-stacked group IV–VI unstrained
heterostructures. The linear response model can be applied
to other families of 2D materials and thus enable experimen-
talists and materials scientists to screen and select favorable
materials with the targeted band types and band gaps for
desired applications.
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