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Abstract

The assessment of information transfer in the global economic network helps to understand the current environment and
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first construct the transfer entropies (TEs) between various intra- and inter-country pairs of economic time series variables,
test their significances, and then use a weighted sum approach to aggregate information captured in each TE. Through a
simulation study, the new method is shown to deliver better information integration compared to existing integration
methods in that it can be applied even when intra-country variables are correlated. Empirical investigation with the real
world data reveals that Western countries are more influential in the global economic network and that Japan has become
less influential following the Asian currency crisis.
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Introduction

Determining how information transfers in a global network is

helpful in revealing the economic conditions of a country; it may

also be a key to predicting future changes. However, the modern

macroeconomy is too large and complex to build accurate models

that can mimic the underlying economic system [1]. Although

various approaches have shown considerable advances [2–5],

major challenges must be dealt with for a complete understanding

of the macroeconomy [4,6]. One major challenge is the evaluation

of direct or indirect interactions among agents (participants). We

can consider an economic system as a complex network consisting

of interacting market participants. Current economic models

sometimes fail to predict emergent economic phenomena (e.g.,

worldwide financial crises) from such a network.

Two goals of econophysics are to scrutinize the complex

interactions between multiple agents in the economic system and

to predict emergent economic phenomena. Various time-series

analysis approaches have been introduced; and have achieved

good progress by utilizing probability distribution [7–9], autocor-

relation [10], multi-fractal approaches [11,12], complexity [13],

and transfer entropy [14] to analyze stock market indices.

Although network analysis using a single economic indicator has

been useful, a large number of economic variables should be taken

into account to understand the economic system from a holistic

viewpoint. To gain insight into the structural properties of

interaction networks, an integrative approach considering multiple

economic variables is needed.

From other fields, we may learn how to incorporate information

from multiple data sources. In biology, researchers construct gene

networks showing the interactions between the genes of an

organism [15]. These interactions are often too complex to assess

within a single study. Therefore, multiple, independently curated

gene-interaction databases for a single organism were created. To

obtain a realistic picture of the full gene network, information

scattered across different databases must be combined. For

example, an integrative approach [16,17] was employed to

determine the yeast gene network, and produced a more accurate

genetic interaction network than traditional approaches that had

relied on a single data source. Rhodes et al. introduced a method

that could integrate multiple data sources to obtain accurate

protein-protein interactions [18]. Further on, we compare this

method with that used in the present study.

In principle, we can utilize the integrative methods developed in

biology to construct an economic network, but applying such

methods directly to economic systems is difficult, given the many

differences between the disciplines. In biology, each of the

databases to be integrated often corresponds to a certain piece

of a common puzzle. Biologists want to construct a gene network

by patching together multiple databases that represent different

areas of the same network, and the influences among the different

databases are often not considered. In the construction of an
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economic network, however, more emphasis should be placed on

considering the dependencies among different data sources and

variables (e.g., how stock market indices are influenced by

exchange rates) than on patching together multiple and unrelated

data sources.

Here, we introduce a new computational method that can

integrate multiple economic variables, to produce a composite

economic network. We used five monthly macro-economic

variables–industrial production index (IPI), stock market index,

consumer price index (CPI), exchange rate, and trade balance–for

18 countries, measured for a total of 192 months in the 1990s and

2000s. These five variables are generally used to describe the open

economic model that accounts for cross-border trades. We

included most of the G20 countries, as well as Spain and Portugal,

in the analysis.

Figure 1 shows an overview of the proposed approach, which

consists of three major steps. First, we considered each country

separately and measured the information transfer among the five

variables within that country’s borders, thus yielding its domestic

cross-variable network. Subsequently, we measured information

transfer among different countries to build international networks.

We measured the amount of information that transfers among the

variables via transfer entropy (TE), which can measure directional

information transfer by quantifying a deviation from conditional

independence or a prediction improvement [19]. We tested the

statistical significance of the measurement with a nonoverlapping

block bootstrap method [20,21]. Finally, we constructed a

composite network based on the international networks and

cross-variable networks created in the previous steps by using the

proposed integrative approach.

Results and Discussion

Domestic Cross-variable Networks
We constructed a graphical representation called a cross-variable

network in order to understand the information transfer between

the five macro-economic variables in a given country. In this

network, each node represents one macro-economic variable, and

directed edges indicate the direction of information transfer

between nodes. We measured the amount and direction of

information transfer (or the degree of influence) by TE [19].

During the network construction, we retained only those edges

whose TE values are statistically significant (i.e., P,0.05),

according to a statistical test based on nonoverlapping block

bootstrapping [20,21] (see Methods). Thus, not every pair of nodes

in a cross-variable network has an edge. If there is an edge from

node A (source) to node B (target), then we say that A influences B.

Figure 2A shows the cross-variable networks for Brazil and

China, which are based on an 88-month time-series of the five

variables and reveal the information transfer among the variables.

For China, IPI affects CPI and exchange rate affects the stock

market index. For Brazil, on the other hand, exchange rate

influences CPI and IPI influences the stock market index.

Figure 2B shows the cross-variable networks for all 18 countries

in our study, overlaid in a single graph; the label of an edge

indicates on which country’s cross-variable network the edge

appears. According to the cross-variable networks in Figure 2B,

various information transfer occurs among the five macro-

economic variables, and the influence patterns are different for

each country.

Figure 2 can also be interpreted from an economic viewpoint.

One of the major topics of debate in macroeconomics is whether

monetary variables such as inflation (CPI) and nominal exchange

rate have causal effects on real variables including output (IP),

investment (stock market index), export, and import (trade

balance). Figure 2 shows that there is significant information

transfer on both sides among real variables, and from nominal

variables to real variables. Even though the causality chain cannot

be confirmed without a relevant economic model, it is still

interesting to see that monetary variables may be Granger causes

[22] of real variables from our analysis. (In certain environments,

non-zero transfer entropy and Granger causality are equivalent

[23].).

International Networks
Using TE, we can also measure the information transfer among

countries and construct an international influence network. Given

two countries, we can determine the relationship between the

same macro-economic variables for each of those two countries by

calculating the transfer entropy between the two time-series.

Figure 3 shows an international influence network between

Germany and Italy, in which the cross-variable networks of the

two countries are superimposed. In this type of network, a node

represents a macro-economic variable, and a directed edge

connects two nodes representing the same variable for two

countries, if there is a statistically significant information transfer

between the two nodes. Similar to a cross-variable network, we use

nonoverlapping block bootstrapping to test the significance of an

edge.

Figure 4A–C shows the international networks for three

continents (i.e., Europe, North and South America (‘‘Americas’’),

and Asia), constructed by undertaking the above procedure. We

show the information transfer for each of the five variables among

the countries, by using different colors and line shapes (see the

legend for Figure 4). For Europe, we did not include the exchange

rate variable in the network, because the Euro currency appeared

in 1999, which falls in the middle of our study’s data-collection

period.

In Figure 4A–C, we can observe several defining features. First,

more influence transfers among the countries in Europe than in

Asia or the Americas. This indicates that economic variables are

more closely bonded for European countries than countries in

other areas, and this reflects the European countries’ cooperative

movements, which led to the formation of the European Union.

Second, in Figure 4A, the stock market index of Germany is a

strong information receiver from other European countries,

Figure 1. Overview of proposed approach. The proposed
approach consists of three major steps – (1) cross-variable network
construction within each country, (2) international network construc-
tion, and (3) integration by building a composite network based on the
international and cross-variable networks.
doi:10.1371/journal.pone.0051986.g001
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including France, Italy, and Portugal. In addition, the stock

market index of Portugal acts as an information source for the

indices of Germany (CDAX Composite), and Italy (FTSE). The

CPI of Italy is a strong information receiver from other European

countries.

We examine the influences of Italy, Portugal, and Spain, which

have suffered from recent economic turmoil. In particular,

Germany is the only common receiver of the significant

information transfer from Italy and Portugal. Italy is a common

receiver from France, Portugal, Spain and the UK. Given the

strong tie among the European countries revealed by TE, we can

expect that signs of the financial crisis originating from these

countries will be transmitted, with either positive or negative

annotation, to the rest of Europe. This transmission channel is

somewhat obvious considering the role and importance of the

German economy within the European Union. In addition,

among the three countries, the influence of Spain on the other

European countries is most noticeable. In terms of trade balance,

France exchanges information with Spain; on the other hand, Italy

and Russia receive information from Spain with respect to CPI.

We also observe some interesting traits in the Americas and

Asia. The Americas have information transfer related to most of

the five macro-economic variables used in the study. In particular,

the USA acts as information sources of the stock market index (for

Brazil and Mexico) and of exchange rate (for Canada) and

information sinks of trade balance (for Mexico) and IPI (for

Argentina). This finding points to the strong economic ties

between the USA, the largest consumer in the Americas, and

the other North American Free Trade Agreement countries and

the two largest South American countries. In Asia, China, India

and Japan form a chain of information transfer in terms of

exchange rate, comparable to the relationship between South

Korea, Indonesia and Japan. China and South Korea are

information sinks of IPI for Indonesia and India, respectively.

Japan influences South Korea in terms of CPI and acts as an

information sink of exchange rate for India and Indonesia.

To determine how the three continent-areas (the Americas,

Asia, and Europe) interact with each other, we measured the

outgoing TE values among the continent-areas in terms of the five

variables, as shown in Figures 4D (Asia and Europe), 4E (the

Americas and Europe), and 4F (the Americas and Asia). For each

variable, we accumulated its outgoing TE values for all of the

countries in a continent-area and then normalized the sum by the

number of countries. These radar charts reveal that different

continent-areas have different influential variables. Table 1 lists

the variables for the high outgoing TE values; these variables have

normalized outgoing TE sums that are greater than the average

for each continent-area. Based on our results, countries in the

Americas and Europe have outgoing information transfer in the

stock market index. European and North and South American

countries influence each other in terms of different variables. None

of the variables has an outgoing TE from Asia to either of the

other two continent-areas, and this result is consistent with the

findings of Kwon et al. [14].

Figure 4G shows the influence that G7 countries (Canada,

France, Germany, Italy, Japan, the UK, and the USA) and China

have on the other countries in our study, in terms of the

abovementioned five variables. In particular, the stock market

index has outgoing TE from the G7 countries and China, to the

other countries.

Combining the Influence Transfer of Different Variables
To determine the economic interactions among the countries,

we analyzed how the five macro-economic variables of one

country collectively influence those variables in another country.

For this approach, the information transfer of the five variables

between the two given countries must be combined. A simple

approach would be to sum the TE values of the five edges between

the two countries in an international network, as shown in Figure 3.

However, these variables typically have different levels of

importance. Therefore, a sounder approach is to calculate the

weighted sum of the five TE values. We determined the weight of

Figure 2. Domestic cross-variable networks. (A) Cross-variable networks for Brazil, and China, which are based on an 88-month time-series of
the five variables and reveal the information transfer among the variables. (B) Cross-variable networks for all 18 countries in our study, superimposed
in a single graph (the label of an edge indicates on which country’s cross-variable network the edge appears).
doi:10.1371/journal.pone.0051986.g002

Figure 3. International network between Germany and Italy.
This figure shows an international influence network between Germany
and Italy (the cross-variable networks of the two countries are overlaid).
A node represents a macro-economic variable, and a directed edge
connects two nodes representing the same variable for two countries, if
there is a statistically significant information transfer between the two
nodes.
doi:10.1371/journal.pone.0051986.g003
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a variable separately for the source and the target of an individual

transfer, because its importance differs for each country. For

example, we calculated the TE value for the composite

information transfer from the USA to China, as follows:

TEUSA?CHN~
X

k

w
(k)
USA|TE

(k)
USA?CHN|w

(k)
CHN ,

where w
(k)
USAand w

(k)
CHN are the weights of the macro-economic

variable k of the USA and China, respectively, and TE
(k)
USA?CHN is

the TE value of the information transfer for variable k from the

USA to China. For a country, we determined the weights for the

five variables based on their hierarchical order in the information

transfer, as found in the country’s cross-variable network. This

hierarchy appears on a cross-variable network as a maximum

spanning tree (MST) [24]. The source of an information transfer is

located at the root, and the sink nodes are at the leaves of the

MST. The weight of the node is based on its proximity to the root

(i.e., the closer a node is to the root, the larger its weight). For

example, in the cross-variable network of Brazil (Figure 2A), the

IPI and exchange rate nodes have a higher order than the stock

market index and consumer price index nodes, respectively. The

Methods section provides additional details for determining the

weight of each variable from a cross-variable network.

It should be noted that we chose a rather simple method in

integrating international networks in the sense that each baseline

network is constructed via a single macro-variable. Given the

complex interactions of macro-economic variables across the

borders, a natural extension of the proposed integration scheme

may be used, for example,

TEUSA?CHN~
X
j,k

w
(j)
USA|TEUSA(j)?CHN(k)|w

(k)
CHN

where TEUSA(j)?CHN(k) is the TE value of the information transfer

from variable j of the USA to variable k of China. This extension is

intuitive from our daily experience since we have seen that an

interest rate cut in the USA affected not only the U.S. stock

market, but also the interest rate in Japan. There are two reasons

that we do not take this approach. First, the computational cost

increases very fast as we move to a larger network. The

computational cost rises at a quadratic rate in the number of

variables if we consider all the international cross variable

relations. It is significantly higher compared to a linear rate.

Second, the current proposed method can easily handle the data

set with multi-resolution or mixed frequency. Economic variables

Figure 4. International networks. Figure 4A–C shows the international networks for three continents – (A) Europe, (B) North and South America,
and (C) Asia. Figure 4D-F shows the outgoing TE values among the continents in terms of the five variables – (D) Asia and Europe, (E) the Americas
and Europe, and (F) the Americas and Asia. Figure 4G shows the influence that the G7 countries (Canada, France, Germany, Italy, Japan, the UK, and
the USA) and China have on the other countries in our study.
doi:10.1371/journal.pone.0051986.g004

Table 1. Information transfer among three continent-areas.

Direction Variables of high (above-average) outgoing TE

EuropeRAsia Stock market index

EuropeRAmericas None

AmericasRAsia Stock market index

AmericasREurope Consumer price index

AsiaREurope None

AsiaRAmericas None

doi:10.1371/journal.pone.0051986.t001

Economic Crises Revealed by Entropy-Based Analysis
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are observed in different frequencies. While the rate of inflation is

officially announced every month in the most of countries, the

stock market index can be observed every day or even every

minute. Although the macro variables are carefully chosen and

constructed to have the same monthly frequency in our current

analysis, it is not actually required since the frequency matching in

calculating the TE is not an issue as long as we use the same

variables across countries. However, the extended integration

scheme may cause a ‘small sample size’ problem if we want to

include the growth rate of the gross domestic product (GDP) that is

observed quarterly.

Figure 5 shows the calculated weights for all the variables of the

18 studied countries. Each 561 column shows the color-coded

weights for each country’s variables. The trade balance is the most

influential variable for India, Italy, and Spain, whereas the

exchange rate is the most influential variable for Brazil, China,

and France. The stock market index is the most influential for

Russia and Japan. For six countries (Canada, Germany, Mexico,

South Africa, South Korea, and the USA), no variable was found

to bear a statistically significant influence.

Adjusting the Degree of Impact by the Influence within
the Border on the Composite Transfer Entropy

We utilized a parameter called the base entropy (BE), to adjust

how much we consider the impact of the domestic influence

transfer on the composite TE computation. Given a domestic

cross-variable network, we determined the directions of edges in

the associated MST as follows: We measured the TE between

every two nodes and then left only those TE values that turned out

to be statistically significant. For a pair of remaining nodes (v, w),

we added edge vRw (wRv) to the MST if TEvRw (TEwRv) turned

out to be statistically significant. In the MST constructed as above,

we defined the BE as the TE of the node that has the lowest order

(i.e., the farthest node from the root). When the BE is zero, the

domestic influence transfer affects the composite TE to the greatest

extent. As the BE increases, the dependency of the composite TE

on the domestic influence transfer decreases. Figure 5 was drawn

with the BE set to zero.

To examine the effect of adjusting the BE on the resulting

composite TE value, we performed a simulation study, as shown in

Figure 6A. We assumed a two-country network, as drawn in the

inset of the figure. Three macro-economic variables were

considered, and we assumed that an influence transfer exists from

v1 to v2, with a TE value of r. In the diagram, TE
(k)
A?B indicates

the TE value of the information transfer between variable vk of the

two countries. Figure 6A depicts how the composite TEA?B value

varies as we change r with respect to four different BE levels (0.1,

1, 10, and 100). The dotted horizontal line on the plot represents

the case in which we ignored the influence between v1 and v2 in

calculating the composite TE. As we increase the BE level, the

dependency of the composite TE on r deceases; the composite TE

eventually becomes independent of r and converges to the dotted

line. Figure 6B shows an interesting comparison between our

approach and the integrative method proposed by Lee et al.

[16,17] in computational biology. This plot demonstrates how the

composite TE value is affected by its component TE value. In this

simulation, we used the same set-up shown in the inset of

Figure 6A, except that we varied TE
(2)
A?B to examine its effect on

the composite TE. We normalized the composite TE values from

our method and that of Lee et al., due to there being differences in

the signal ranges of the two methods. For a fixed value of TE
(2)
A?B,

the range of the possible composite TE values is represented by a

box plot (Figure 6B). The variability of the composite TE is

introduced by using different levels for the BE in our approach, or

an internal decaying parameter for the method by Lee et al. For

both approaches, the median of the composite TE increases as

TE
(2)
A?B increases. For the proposed method, the variability of the

composite TE decreases as TE
(2)
A?B increases, and the opposite

holds true for the method of Lee et al. In our approach, the

variability (or uncertainty) of the composite TE decreases as its

component TE increases, whereas Lee et al. designed their

approach in the opposite way. Consequently, the composite TE

can be nonzero in our approach, even when TE
(2)
A?B is zero. In

contrast, the composite TE is zero if TE
(2)
A?B in the method by Lee

et al is zero. Given that TE
(1)
A?B is nonzero, a nonzero composite

TE may be more reasonable in this example.

The difference between the two methods originates from a

difference in the basic principles of the application domain. In

biological network integration, it seems reasonable to consider

only those component TE values that are of a certain magnitude in

computing the composite TE, in order to filter out noise. For the

example shown in Figure 6A, the relationships between v1 and v2

for biological network integration need not be considered, because

they are independent variables obtained from separate databases.

However, for the current problem, v1 and v2 are not independent,

and using an integration method for biological problems would

yield incorrect composite TE values.

Analysis of Composite Information Transfer
We integrated the influence transfer among the five macro-

economic variables for the 18 countries. During the integration

process, we determined two composite TE values (incoming and

outgoing) for each country. In Figure 7A, the 18 countries are

positioned according to their incoming and outgoing composite

TE values. This plot is based on the time-series data collected from

June 2002 to September 2009 (88 months). As previously

Figure 5. Variable weights. This figure shows the calculated weights for all the variables of the 18 studied countries. Each 561 column shows the
color-coded weights for each country’s variables. This plot was drawn with the base entropy set to zero.
doi:10.1371/journal.pone.0051986.g005
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explained, we swept the BE of a composite transfer from 0 to 100

(see the legend) to cover the different degrees of impact of the

domestic influence transfer on the composite TE; thus, each

country appears on the plot as a trajectory rather than a single

point. A longer trajectory for a country reflects greater uncertainty

in the composite TE value for that country (or the greater

dependency of the composite TE on how much we consider

domestic influence transfer).

From Figure 7A, we can cluster countries by their locations on

the plot. The European countries and the USA have high outgoing

composite TE values, confirming that these countries often serve

as information sources in the global economy. In contrast,

Argentina and Russia tend to have small outgoing and incoming

composite TE values. We can also categorize countries according

to trajectory length. Some countries, such as India, the UK and

China, have long trajectories. It means that their composite TE

values vary by the degree to which we consider domestic cross-

variable information transfer with regard to the composite TE

calculation. In other words, the domestic influence transfer of such

countries can potentially affect their international influence

transfer. Other countries, such as Brazil, Canada, Mexico, and

South Korea, have short trajectories, suggesting that the domestic

influence transfer of these countries does not substantially affect

their international economic interactions. Another observation is

the direction of the trajectories. Canada and Russia have vertical

trajectories, but the locations of their minimum BE points are

opposite of each other. For Canada, ignoring the impact of

domestic influence transfer produces the largest amount of

incoming composite TE, while the opposite is true for Russia.

Figure 7B shows that the economic interactions among the

European countries are considerably strong. As only seven

European countries are considered in the study (i.e., France,

Germany, Italy, Portugal, Russia, Spain, and the UK) for the

composite TE calculation, the TE values of a country in Figure 7B

differ from those of the same country in Figure 7A. The overall

trajectory patterns of the European countries depicted in Figure 7B

appear to be similar to those in Figure 7A. The incoming

composite TE values for Germany are similar in both plots, but its

outgoing composite TE level is much lower in Figure 7B. This

suggests that Germany affects non-European countries more than

its European neighbors do. In the case of Russia, the incoming and

outgoing composite TEs are minute, which denotes that Russia

has very weak connections to the other countries in Western

Europe.

For some countries, the time series for four of the five macro-

economic variables (except CPI) are available for a longer period

(from January 1994 to September 2009, 192 months). To see the

change in the trajectories of the composite TE values over time, we

divided this period into three subperiods and calculated the

composite TE values for seven countries (Germany, Indonesia,

Italy, Japan, South Korea, the UK, and the USA) over each of

these subperiods (Figure 7C–E). We can make several interesting

observations from Figure 7C–E, whose insets show the interna-

tional influence networks constructed with composite TE values.

The amount of composite TE of Germany has gradually

increased over the three subperiods. Reunification of Germany

occurred in 1990, only a few years prior to the start of the first

subperiod (Figure 7C). We conjecture that the German govern-

ment put considerable effort into handling the domestic aftermath

of reunification during the initial period (Figure 7C) and that the

international influence of the German economy was reduced in

the first subperiod, although a certain amount of outgoing

influence is still observable in Figure 7C. In the second subperiod

(Figure 7D), the incoming composite TE of Germany remains

negligible, but the outgoing composite TE starts to increase with a

somewhat long trajectory. During this subperiod the economic

integration among EU countries became a strong bond. Especially

in 1999 a monetary union, Eurozone, was established in which a

common monetary unit started to be circulated. The German

economy has played an important role in the establishment of the

Eurozone, and this increased influence is captured in the outgoing

TE. In the last subperiod (Figure 7E), the outgoing composite TE

of Germany becomes larger with shorter trajectory than in the

second subperiod. The incoming composite TE is also greater.

This observation suggests that Germany becomes close to

completion of its reunification process in the last subperiod and

expands its influence in European economy.

The changes in the incoming composite TE values of Indonesia

and Italy appear more salient than Germany. For Italy, its

outgoing composite TE tends to decrease over these three periods,

but its incoming composite TE shows an increasing pattern. It

would be interesting to investigate if this observation bears any

relationship with the European sovereign debt crisis that certain

European countries recently faced. For Indonesia, its outgoing

Figure 6. Analysis of composite transfer entropy calculation. (A) To examine the effect of adjusting the base entropy (BE) on the resulting
composite TE value, this plot depicts how the composite TEA?B value varies as we change r with respect to four different BE levels (0.1, 1, 10, and
100). (B) Comparison between our approach and the integrative method proposed by Lee et al. [16,17] in computational biology. This plot
demonstrates how the composite TE value is affected by its component TE value.
doi:10.1371/journal.pone.0051986.g006
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composite TE does not change considerably over the three

periods, but its incoming composite TE grows fast. In the late

1990s, Indonesia experienced a severe financial crisis associated

with foreign exchange [25], after which the Indonesian Rupiah

has never been recovered its previous high valuation. The political

instability after the crisis also may result in this rapid increase of

the incoming composite TE.

South Korea, which also suffered from the same Asian financial

crisis in 1997 as Indonesia, shows different changes in the

composite TE. In the first subperiod (Figure 7C), the outgoing

composite TE of South Korea is negligible, whereas the incoming

composite TE is more noticeable. As a developing country at that

time, South Korea continued to accept foreign investments and

aid to rebuild the country, but its influence to other countries was

insignificant. During the first subperiod, South Korea even faced

the financial crisis as mentioned above. However, this crisis

eventually provided an opportunity for South Korea to make its

export-driven economy stronger than before. South Korea is now

a member of the Organization for Economic Co-operation and

Development (OECD) and has a strong economy driven by

exports and foreign trades. This fact may be reflected in Figure 7D

and 7E, where the outgoing composite TE of South Korea tends

to increase.

In Figure 7D–E, the incoming composite TE of Japan seems to

decrease. After the Asian currency crisis in 1997 [25], Japanese

banks, which already weakened from the long recession, suffered

capital losses as the crisis deepened and had to collect back their

outstanding international loans to other Asian countries to meet

the capital adequacy requirement. This may appear in Figure 7D

as the incoming composite TE of Japan at certain levels. In the last

subperiod, the trajectory of the composite TE of Japan appears as

a single point, meaning that changing the degree of domestic

cross-variable influence on international influence transfer makes

little difference. Many factors may be responsible for this

phenomenon. One explanation is that the international economic

interaction of Japan started to shrink with the burst of the domestic

real estate bubble that resulted in a several decade-long stagnation.

This shrinkage took place mainly because the focus of the

government’s main economic policy had moved from the trade

related issues to the domestic debt related ones. Even so, Japanese

economy is expected to maintain its influence on the global

economy since it has constantly shown massive trade surpluses

against the rest of the world [26–28]. This expectation may be

reflected on the moderate growth of the outgoing composite TE

values in Figure 7D–E.

Note that Figure 7C–E was obtained from the integrated TE

values rather than individual TE calculations. As for the integrated

TE analysis, it would deserve new research to uncover the effect of

(non)stationarity of individual component TE values underlying

the composite TE computation. In the preprocessing of our

methodology, we carried out first-differencing and discretization,

Figure 7. Composite information transfer. (A) The 18 countries are positioned according to their incoming and outgoing composite TE values.
(B) The economic interactions among the European countries. Figure 7C–E shows the composite TE values for seven countries (Germany, Indonesia,
Italy, Japan, South Korea, the UK, and the USA) over three periods – (C) January 1994-December 1998 (60 months), (D) January 1999-December 2004
(72 months), and (E) January 2005-September 2009 (60 months).
doi:10.1371/journal.pone.0051986.g007

Economic Crises Revealed by Entropy-Based Analysis

PLOS ONE | www.plosone.org 7 January 2013 | Volume 8 | Issue 1 | e51986



which are effective in reducing nonstationarity, especially for unit-

root time series.

Methods

Data Preparation
Our study focused on 18 countries. Their names and three-

letter abbreviations as denoted by ISO3166-1 alpha-3 code [29]

are as follows. Europe: France (FRA), Germany (DEU), Italy (ITA),

Portugal (PRT), Russia (RUS), Spain (ESP), and the United

Kingdom (GBR); North and South America: Argentina (ARG), Brazil

(BRA), Canada (CAN), Mexico (MEX), and the United States

(USA); Asia: China (CHN), India (IND), Indonesia (IDN), Japan

(JPN), and the Republic of Korea (KOR); Africa: South Africa

(ZAF). These countries include most of the G20 countries. Among

the G20 countries, we excluded Turkey, Saudi Arabia, and

Australia, due to lack of data.

We used five monthly macro-economic variables: IPI, exchange

rate (per special drawing rights; see [30]), stock market index,

trade balance, and CPI. We obtained datasets from the CEIC

Macro-economic Databases for emerging and developed markets

[31]. CPI data are from June 2002 to September 2009 (88

months); the other variables are from January 1994 to September

2009 (192 months). China’s IPI data had four missing data-points

(January of 2009, 2008, 2007, and 2006); we performed

interpolation to estimate them. We used seasonally adjusted

time-series data for IP and trade balance.

For stationarity, we first-differenced the variables. To calculate

the TE, we discretized the first-differenced series to integer values,

according to the following procedure. We set three threshold

points (at the mean and two points that are one standard deviation

away from the mean) that define four states: fast increasing,

increasing, decreasing, and fast decreasing. We coded these four

states, from fast increasing to fast decreasing, using the integers 1,

2, 3, and 4. In the discretization by binning, using too few bins

may reverse the detected information transfer in comparison to the

true information transfer [32]. In our experiments, using 4 and 6

bins produced similar results, whereas using 2 bins reversed

approximately half of transfer directions with respect to the 4-bin

case.

Transfer Entropy
We employed TE [19] to measure information transfer.

Transfer entropy was proposed to measure information transfer

between two time-series data based on the probability density

function. In contrast to mutual information and correlation, TE

can analyze the directions of each information transfer.

For a more formal definition of TE, let xtf gT
t~1 be a time series

that follows a stationary Markov process with order p, that is,

p xtDxt{1, � � � ,xt{p

� �
~p xtDxt{1, . . . ,xt{p,xt{p{1

� �
. For notation-

al convenience, we denote X (p)
t ~ xt,xt{1, . . . ,xt{pz1

� �
. Consider

another time series ytf gT
t~1. If the generalized Markov property

holds, i.e.,

p xtz1DX
(p)
t

� �
~p xtz1DX

(p)
t ,Y

(q)
t

� �
the knowledge of the past realization of yt does not improve the

prediction of xtz1. When the prediction is carried out in a linear

regression setting with p~q, the generalized Markov property

implies Granger non-causality. For simplicity of notation, let

x0~xtz1, X~X(p)
t , and Y~Y

(q)
t . We define the transfer entropy

from y to x as the expected value on the conditional Kullback-

Leibler divergence that measures the violation of the generalized

Markov property:

TEyx~E

ð
p x0DX,Yð Þ log

p x0DX,Yð Þ
p(x0DX)

dx0
� 	

which we can rewrite as

TEyx~

ð
p x0,X,Yð Þ log

p x0,X,Yð Þp Xð Þ
p x0,Xð Þp X,Yð Þ dx0dXdY

For an implementation of TE, we can consider the sample

counterpart

TEyx~
X

x0 ,X,Y

p̂p x0,X,Yð Þ log
p̂p x0,X,Yð Þp̂ph Xð Þ
p̂p x0,Xð Þp̂ph X,Yð Þ

where p̂p denotes the density estimated with time series xtf gT
t~1 and

ytf gT
t~1. For example, we can apply a kernel estimator (with

bandwidth h)

p̂p xð Þ~ 1

T

XT

t~1

Kh x{xtð Þ

Under regularity conditions, we can show the convergence of

TEyx to TEyx as T and h approach to zero. In our current

implementation, we follow the standard practice in the literature

where the relative frequency (with coded data as described in the

previous section) is applied to get the estimated density, p̂p.

Our data consist of time series of scalar variables, but the

Markov processes TE is defined on are defined in a vector state

space. We thus employed the Cao criterion [33] and the Ragwitz

criterion [34] to check if our data need the method of time-delay

embedding [33,34]. It can reveal the evolution of the vector field

underlying a scalar observation. (For implementation, we used the

TRENTOOL package [38].) Based on the result of this check, we

performed time-delay embedding with the dimension of two on

our time-series data prior to calculating TE.

Testing Statistical Significance of Transfer Entropy by
Bootstrapping

After measuring the TE from the time-series J to I, we applied

the nonoverlapping block bootstrap method [20,21] to test the

statistical significance of the measured TE. We first divided each of

the two time-series randomly into two blocks at a random cut

point and formed a new time-series by rejoining the blocks with

bootstrap sampling [20,21]. Using too many small non-overlap-

ping blocks in the bootstrap will destroy any nuisance nonstatio-

narity remaining in the data and thereby bias the bootstrap

towards a false positive result. We then measured the TEs from J

to I. Replicating this process 1,000 times produces a TE

distribution for the two time-series, from which we can test the

statistical significance of a specific TE value. The significance level

is set at 0.05. There is also an issue of multiple comparison given

that we test the significance of 1890 TE values in total [306 (inter-

country) times 5 (economic variables) plus 20 (domestic) times 18
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(countries)]. We performed the multiple comparison correction

based on the false discovery rate (FDR) [35–37] with the FDR

threshold of 0.05. In the end, 119 TE values turned out to be

statistically significant out of the 1890 TE values (approximately

6.5%).

For further verification of this bootstrapping-based testing, we

utilized the synthetic autoregressive process with order n,

according to Vincente et al. [39]:

X(tz1)~
Xn

i~0

aiX(t{i)zsgx(t)

Y(tz1)

~
Xn

i~0

aiY(t{i)zsgy(t)z
cX(tz1{d), if linear coupling

cX2(tz1{d), if quadratic coupling

(

where ai is a parameter drawn from a normalized Gaussian

distribution, gx and gy are Gaussian white noise, and three

parameters c, s, and d represent the coupling strength, noise

strength and delay, respectively. Using this model, we generated

signals X and Y, assuming information transfer from X to Y. We

then measured the TE values and computed p-values using the

non-overlapping block bootstrap method as described above. We

repeated the procedure for 100 different combinations of X and Y.

Figures 8A and 8B show the fraction of statistically significant TE

values (P,0.05) over different coupling strength values for data

sets with lengths 88 and 60, respectively. The coupling strength

was set to the ratio of the first two terms to the last term in the

above equation for Y(t+1). The fraction of significant couplings

increases under the linear and quadratic coupling conditions for

XRY, whereas there is no notable change for the non-coupling

case and TE values of YRX. This result suggests that the non-

overlapping block bootstrap method works for the purpose of

statistical significance testing in this study. See Figure S1 in

Supplementary Material S1 for more details.

Updating Variable Weights for Computing Composite
Transfer Entropy

We integrated the individual information transfer appearing in

the domestic cross-variable networks, under the following

assumptions. First, the composite information transfer between

two countries is a linear combination of individual component

transfer. Second, the weight of an influential variable (or an

information source) is higher than that of an influenced variable

(or an information sink).

For each country, the variables are initially equally weighted

one-fifth each, and we updated the variable weights based on the

influence transfer between the variables represented in the MST

[24] of the country’s cross-variable network. MST is useful,

because we can find the direction of the overall influence transfer

among the variables therefrom. For example, the USA has only an

information transfer from the exchange rate to the stock market

index, and no other transfer (Figure 2). We initially set the weights

of the five variables as follows:

w
(IP)
USA~w

(CPI )
USA ~w

(SMI)
USA ~w

(ER)
USA~w

(TB)
USA~0:2:

Then, the weights of the exchange rate and the stock market

index variables become

w
(ER)
USA~0:4|

BEzTE
(ER?SMI)
USA

2BEzTE
(ER?SMI)
USA

and

w
(SMI)
USA ~0:4|

BE

2BEzTE
(ER?SMI)
USA

,

where BE represents the base entropy.

Figure 8. Validity check for testing statistical significance of transfer entropy by non-overlapping block bootstrapping. Portion of
statistically significant couplings over coupling strengths from 0.1 to 1.9. Order n = 2. Three types of coupling (linear, quadratic, none) used. Assumed
direction of information transfer: XRY. Data lengths: 88 (A) and 60 (B).
doi:10.1371/journal.pone.0051986.g008
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fer entropy over various coupling strengths. Each TE
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