Predicted THz-wave absorption property in allinorganic perovskite, CsPbI₃ thin film: Integrity at the grain boundary

Inhee Maeng^{1,+}, Si Chen^{2,+}, Seungjun Lee^{3,+,†}, Shenghao Wang^{2,*} Young-Kyun Kwon^{3,4*}, and Min-Cherl Jung^{5,*}

¹YUHS-KRIBB, Medical Convergence Research Institute, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
²Materials Genome Institute, Shanghai University, Shanghai, 200444, China
³Department of Physics, Kyung Hee University, Seoul, 02447, Republic of Korea
⁴Department of Information Display and Research Institute for Basic Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
⁵Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8577, Japan

⁺These authors contributed equally: Inhee Maeng, Si Chen, and Seungjun Lee

[†]Present address: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA

^{*}Correspondence: Shenghao Wang (shenghaowang@shu.edu.cn), Young-Kyun Kwon (ykkwon@khu.ac.kr), and Min-Cherl Jung (jung.mincherl.fp@u.tsukuba.ac.jp)

Figure S1. The THz spectra transmitting through the sample B and its reference in (a) time-, (b) frequency-domain, and (c) the transmission spectrum of each sample. (d) The THz-wave absorption property of the protection layer, PTAA polymer. Its transmission from 0.5 to 3.0 THz shows almost 98 % and there is no significant THz-wave absorption.

Figure S2. The C, N, and O 1s core-level spectra for the A, B, and C samples. The binding energies of C and O 1s show the typical physi-absorbed states that are due to the sample transfer from the N_2 glovebox to the vacuum chamber. There is no significant chemical state bonded to the CsPbI₃ thin films.

Figure S3. After the self-degradation, we confirmed all samples become δ -CsPbI₃ with PbI₂.

Figure S4. (a) THz-wave absorption properties of the A, B, and C samples with δ -CsPbI₃. (b-d) Conductivities and peak-fitting curves for the resonant phonon mode of A, B, and C samples.

Figure S5. (a) Phonon band structure and (b) calculated THz absorption spectrum of bulk δ -CsPbI₃. (Black solid line) The THz absorption spectrum of γ -CsPbI₃ was also represented as a gray solid line for the comparison. (a) and (b) were calculated based on the theoretical equilibrium structure of δ -CsPbI₃ with equilibrium lattice constants of a = 4.753 Å, b = 10.415 Å and c = 17.676 Å. Blue arrows highlight strong absorption peaks of δ -CsPbI₃ that were described in Fig. S4.

Figure S6. (a-f) Real-space visualization of phonon vibration modes of δ -CsPbI₃ at 0.96, 1.82, 2.27, 2.31, 2.55, and 3.02 THz, respectively. Grey, purple, and cyan balls indicate Pb, I, and Cs atoms and the red, blue, and brown arrows show their corresponding real-space displacement vectors, respectively.

Sample	$ω_{0j}/2π$	$\Omega_j/2\pi$	$\gamma_j/2\pi$
	[THz]	[THz]	[THz]
Α	0.9	2.5	0.2
	1.5	4.8	0.7
	1.9	5.3	0.6
	2.1	1.2	0.2
	2.6	3.2	0.8
В	0.9	3.0	0.3
	1.5	4.0	0.5
	1.8	5.0	0.5
	2.0	1.3	0.2
	2.6	1.0	0.3
С	0.9	2.9	0.3
	1.5	4.2	0.5
	1.8	5.0	0.5
	2.1	1.3	0.2
	2.6	1.5	0.4

Table S1. Lorentzian parameters to describe THz conductivity of the A, B, and C samples with γ -CsPbI₃.

Table S2. Lorentzian parameters to describe THz conductivity of the A, B, and C samples with δ -CsPbI₃.

Sample	$\omega_{0j}/2\pi$	$\Omega_{ m j}/2\pi$	$\gamma_{\rm j}/2\pi$
	[THz]	[THz]	[THz]
А	0.9	1.4	0.2
	1.4	3.9	0.3
	1.8	2.1	0.2
	2.1	3.0	0.4
	2.5	0.9	0.2
	2.7	5.6	0.7
В	0.9	1.3	0.2
	1.4	3.8	0.2
	1.8	1.9	0.1
	2.1	1.7	0.3
	2.5	0.9	0.2
	2.8	4.2	0.5
С	0.9	1.5	0.2
	1.4	3.8	0.3
	1.8	1.8	0.1
	2.1	2.0	0.3
	2.5	0.8	0.2
	2.8	4.9	0.6