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The functional Monte Carlo method devised by one of the authors for the efficiency and

accuracy can be used to calculate universal scaling functions. In order to demonstrate the

technique we take Istate Potts model for which many of the exact critical properties are known.

Various thermodynamic functions of Potts model on square lattice of sizes ranging from 6 X 6 to

33 X 33 are calculated and the two scale factor universality (or hyperuniversality) theory put

forward by Privman and Fisher is tested and verified. We also estimate the higher order

derivatives of universal function using hyperuniversality hypothesis.

I .  I N T R O D U C T I O N

A very efficient Monte Carlo technique developed recently by one of the authors1-2  which

calculates continuous thermodynamic functions of continuous thermodynamic variables can be

used to estimate the universal functions of the two scale factor universality theory introduced

by Privman and Fisher.34 In the functional Monte Carlo technique we take independent

samples in very short time interval typically of a few hundredths of a Monte Carlo step per spin

and it is so fast and efficient that we can calculate whole thermodynamic functions in a time that

takes to obtain a single thermodynamic point by conventional Metropolis algorithm. This tech-

nique not only is efficient and accurate but also furnishes primary thermodynamic functions such

as free energy directly from the Monte Carlo data, a feature not available in the conventional

Monte Carlo method?”

In this talk we present a brief account of my Monte Carlo technique (which will be ab-

breviated as M.C.t. hereafter) together with results of the 3-state Potts model on a square lattice.

Since we can calculate free energy in continuous form in the functional Monte Carlo technique,

we can extract singular part of various thermodynamic functions from the simulation results and

we can estimate universal functions eventually. In section II we will explain the essence of the

functional Monte Carlo technique and in section III, we will discuss the new technique analyzing

ëRefereed version of the invited paper presented at the 8th ROC-ROKSymposium  on Condensed Matter and Statistical
Physics, February 14-15, 1992, Taiwan, R.O.C.

737 01992 THE PHYSICAL SOCIEn
OF THE REPUBLIC OF CHINA

-_



738 AN EFFICIENT MONTE CARLO TECHNIQUE FOR CONTINUOUS... VOL. 30

critical behavior using the functional Monte Carlo results. In section IV we will present the cal-

culations done on the 3-state Potts model on a square lattice and finally we devote section 5 to

a summary and further remark concerning this new technique.

I I .  FUNCTIONAL MONTE CARLO METHOD

In order to illustrate the new method let us take as an example a spin-l/2 Ising model of

N spins in the absence of an external field. The energy of the system can be written as

E({Si})  = -J C SiSj,
<i,j>

where Si is the spin variable assuming +- 1 values, J is the exchange energy and < i,j > runs over

interacting nearest neighbor pairs i,j. The canonical average <A > of any thermodynamic quan-

tityA({Si})  is defined by

< A >= 5 4(S)) exp(-PE((S;)))/Q,
tsi1

(2)

where /I is the inverse temperature l/kT  with Boltzmannís  constant k and Q is the partition func-

tion defined by

Q = f?J exp(--PE((Si))).
tsi1

We can rewrite Eq. (2) and (3) in slightly different forms as

< A >= 2 Q(E) exp(-PE)A(E)/Q,
E=Eo

and

Q = 5 R(E) exp(-PE), (5)
E=&

where X(E) is the microcanonical average of the variable A defined by

(3)

(4)

(6)
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and Q(E) is the total number of configurations with a fmed E. The prime in Eq. (6) indicates

that the summation is over microscopic configurations with the fured E. In this point of view,

the calculation of <A> is reduced to the calculations of Q(E) and microcanonical average

x(E).
Let y, N+, and N+ + be the coordination number, the total number of up-spins, and the

total number of interacting up-spin pairs respectively. Then the energy of the system can be

written as

E  = -4J(N++ - ;yiv+), (7)

where the constant term -l/2 JyN has been dropped. Therefore configurations with constant E

can be generated by keeping N+ + - l/2 yN+ constant. In this description, the lowest energy,

EO = E ( N ++ = 0, N+ = 0) = 0 and highest energy, E max = E(T = m) = l/2 JyN so that

there are onlyyN/8 discrete energies separated by AE = 4/. Therefore we only need to generate

yN/8  independent sets of configurations to evaluate Q(E) andZ(E).

The crux of new technique is how to evaluate A(Ej)  and CJ(Ei)  efficiently. We set up a ran-
. dom walk through configuration space restricted to narrow energy band given by

Ej - :yAE  5 E({Si})  2 Ej + (iy + l)AE,

and use, for data taking, configurations which satisfy

E({Si}) = Ej and E({Si})  = Ej + AE. (9)

As will be explained later, only by this elaboration it is guaranteed that samples from which data

are taken are independent configurations.

We will sketch briefly the new algorithm. We first generate an initial spin configuration

{Si} with given energy E({Si}).  We start a random walk by single spin flip algorithm as follows.

We select a single spin out of N spins either randomly or sequentially and attempt to flip it.

Whenever the attempted move takes the walker to a spin configuration {Si} which lies within

the energy band (8) the move is allowed; otherwise the move is rejected. Whenever the walker

visits points in the configuration space satisfying the energy value given by (9), relevant infor-

mation such as N+ is sampled together with the total number of visits. The last information is

vital and a key to the new method which allows us to evaluate canonical averages.

The allowance of l/2 yE energy width in (8) is crucial for the accurate determination of

distribution of Nf although it is less so for the estimate of Q(E + AE)/sZ(E).  The reason is as

follows. Since the energy change 6E produced by the single spin flip move from the original con-

figuration is restricted to a range [-l/2  yAE, l/2 yAE], the allowance of the energy width makes

the next spin flip move after sampling always lie within the energy band given by (8). Therefore
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the walker moves away immediately from the previously sampled configuration thereby eliminat-

ing the possibility of repeated sampling of the same configuration. The possibility of such

repeated sampling is especially severe at low E values where the rejection rate is very high. This

allowance of the energy width also lets the walker escape trapping in metastable states if any.

However allowance of energy width larger than l/2 qAE makes the M.C. process rapidly ineffi-

cient as was discussed in Ref. 1.

As far as we are interested in macroscopic thermodynamic functions or derivatives such

as internal energy or susceptibility we only need calculate the number of configurations, w(E,

N+) of fmed E and N+ since A({Si}) ës corresponding to these quantities depend only on N+,

so that S2(E)  andz(E) are calculable from w(E, N+)  by

Q(E) = Co, N+>,
N+

and
. -

Z(E) = c A.(-& N+)w(JT ~+)P(Jv
. N+

In order to calculate w(E, N+),  we run this random walk starting from the lowest energy

Eo to the highest energy E,,. Since we know w(E0, N+), namely w(E, N+) = 6,+,,  + dN+,N

so that Q(Eo) = 2, (in practice we can calculate some more w(E, N+)  for low lying Eís by hand

so that we can start the random walk and data taking from some higher E.) we can estimate w(E,

N+) successively by the following way.

We count n(E, N+) andn(E + AE, N+),  the numbers of configurations of two neighboring

energies with given N+ visited by the random walker in the configuration space given by (9).

Let Nd and Nd+ be the total number of points visited with energy E and E + AE, i.e., Nd =

Sz(E, N+) and Nd + = Xn(E + AE, Nf). Then we have Q(E + AE) = Q(E)Nd+/Nd,  and

o(E, N+) = Q(E)n(E,  N+)/Nd.  This completes the functional Monte Carlo technique.

The first test of the new method I took an Ising model on an N = 30 x 30 square lattice

with toroidal boundary condition and obtained data and compared the results from the data with

the well known exact results for finite sized lattices.

We also calculated the magnetization and susceptibility and compared with ëOnsagarís

exact magnetization for infinite system and known asymptotic susceptibility expression for in-

finite system. The typical relative deviations from the exact values, (A,, - A,,,,t)/A,,,,t  for the

free energy, internal energy, entropy and specific heat are around 1O4,  10e3,  10e3  and 10m2 respec-

tively.

The advantage of this new method beside the points we mentioned already is 1) the algo-

rithm consists of only integer operations which best suit digital computers, 2) it is extremely
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lenient in its demands on the random number generator since the complexity of the system itself

serves as a random number generator and 3) there is no critical slowing down because the con-

figuration space is restricted to a narrow energy band at each separate energy.

III. UNIVERSAL SCALING FUNCTION ENTAILING

HYPERUNIVHRSALITY

Thermodynamic functions calculated from the Monte Carlo data can be used 1) to test the

finite size scaling theory, 2) calculating various critical parameters and 3) ultimately to estimate

the universal scaling functions. In this paper we will be mainly concerned to the test of two scale

factor universality or hyperuniversality hypothesis put forward by Privman and Fisher. Privman

and Fisher-3 assert that the singular part of free energy density has the form

f,(t, H; L) M KdY@L1íì,bHLAíì), (10)

where the scaling function Y is universal for all universality class. In the above equation L is

the side of d dimensional cube and t and H are two scaling fields and l/v and AJv are correspond-

ing critical exponents. The theory asserts that two metric scale factors a and b are the only non-

universal numbers which depends on the particular system and no further nonuniversal scale fac-

tors needed in describing scaling behavior near the critical point. Since fmite system is analytic,

the scaling function Y is analytic around and at the bulk critical point, t = 0 and H = 0. In this

form the hyperscaling relation

2-cr=dv (11)

is already built in and the no + functions differentiating above and below the critical tempera-

ture is needed. Asymptotic behavior such as

Y(T-,w)  M (k~)~"Q*(w(h)-~),  f o r  7 i &co,

of the scaling function Y eventually leads to two 2 amplitudes in the t- scaled form

f&H;4 = a 2-alt(2-aQ*(ba-AHltl-A).

(12)

(13)

The two scale factor universality form given by Eq. (10) is best suited for the analysis of critical

behavior for the data obtained using functional Monte Carlo technique. This is because in

Monte Carlo method we can only calculate thermodynamic functions of finite size and these

functions contain the singular part which is the universal scaling function Y given by Eq. (10)

and its derivatives.

In order to explain the technique of extracting the universal scaling function, let us start
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from the definition of free energy density. It is

Nrnî^

2 R(E)exp(-KN,) ,

N.=O I

(14)

where K is K = @JE with the minimum energy spacing AE and V is the volume of the system,

Ld. In this paper we will consider only the case with no external field so that the magnetic scaling

field is suppressed.

We w-illídefme  temperature scaling field by E = K, - K instead of usual t = 1 T/T, - 11 for

the reason which will be clear as we proceed. The temperature scaling variable now becomes

r = a.cL~~ with the nonuniversal metric factor a. This free energy is a sum of two parts, namely

analytic part,f,  and singular partf,,  i.e.,f = fa + fs. Following Privman and Fisher we can write

the singular part of the free energy asfs = L-dY(z).

Let us denote the n-th order derivative of the free energy density with respect E byp).

Then we have

. f(n) = fp + aîp+ìlîy(ì)(r), (15)

wheref,(ì)  is n-th derivative of the analytic part of the free energy density with respect

ëtemperatureí, E and Yíì)( r ) is n-th derivative of the universal scaling function Y(r) with respect

variable t. Since Y(r) is universal its derivatives Yíì)(r)  are also universal. In the functional

Monte Carlo technique one calculates total thermodynamic functions of the finite system and

variables for analytic part, E and for the singular part, t are different. Therefore it is not a

straight forward matter to isolate the singular part from the sum. However two factors can be

taken into account. 1) For the higher order derivatives where thermodynamic quantities diverge

at the critical point, the normal part will be negligibly small compared with the singular part near

and at the critical point. 2) It is expected that the analytic part would well be slowly varying so

that it can be assumed to be a constant in the narrow temperature range around the bulk critical

point. These observations are confirmed by our simulation data as we see in the next section.

Since thermodynamic functions of interest in analyzing critical behavior are free energy

and derivatives of -f, we define I?, by -J Then the higher order derivatives of r0 is nothing but

cumulants of the canonical weight factor

@(N,)  = R(N,)exp(-AíN,)/Q, (16)

because of the fact that as = a(-K). In the above Eq. Q is the partition function. For example

the second derivative of the Ia with respect to E is I2 whose singular part is -czîL~~+~~Y~~)(,),

which in turn is proportional to the singular part of the specific heat.

In extracting the singular part of the thermodynamic functions we take as the first ap-
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proximation analytic part of thermodynamic functions tosbe  a constant identical to the value at

the bulk critical temperature. These values are estimated fitting thermodynamic functional

values at the bulk critical temperature using usual finite size scaling prediction. After subtract-

ing analytic part of the cumulant from the total cumulants, remnants are first approximants of

the singular part of the cumulants. We next perform size dependent transformation of the sin-

gular part of cumulants from variable E to variable r. This transformation makes, for a fared

range oft, the E range smaller and smaller as L grows larger and larger. Therefore as the system

size becomes reasonably large, constant value approximation of the analytic part of the ther-

modynamic functions in E variable becomes better better provided that analytic part is smoothly

varying. Thirdly we multiply size dependent factor L-d+nb’  to the rz-th cumulant. Asymptotic

limit of this function in the limit for large L will furnish first approximant of the n-th derivative

of the universal scaling function Y(z).

IV. SCALING FUNCTION FOR THE 3-STATE POTTS MODEL ON A
SQUARE LATTICE

.
We performed Monte Carlo simulation for 3-state Potts model on a square lattice with pe-

riodic boundary conditions, of sizes ranging from 6 x 6 to 33 x 33 The canonical distribution

function is calculated and first order approximants of the universal function and its derivatives

are estimated.

The energy of the Potts model can be written as

E({ai}) = -J C J(ai,  aj), (17)
<i,j>

where spin variables CJi at i-th lattice site can take 0. . *q - 1 values for the q-state model. 6(ai,

cri) is usual Kronecker delta function which take a value 1 if the two arguments are equal, 0 other-

wise. The ground state is q-fold degenerate takes energy -yN/2  for N spin system, where y is

the coordination number. We substract this number from the energy expression to make the

ground state Ec = 0. The energy spacing is AE = J and the maximum energy E,, = (q-1)/2q

.+N. The energy labeling integer number, N, G E/J, now runs from 0 to Nemax = (q-1)/2q  yN

and moments of the canonical distribution function (16) can now be calculated from the Monte

Carlo data (Q(N,)}  as

(18)

From these moments, we can calculate various cumulants r,. We calculate them upto 4-th order

using formula
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r1, =

r2 =

I73 =

I74 =

Since

(a2  - a;>

v ’

(19)

the singular part of the l?u is defined by -fX,  it is related to the universal scaling func-

tion Y(r) by

ros = -PY(r) (20)

where we define t by EL I”. Nonuniversal metric factor a has been absorbed into r. In our cal-

culation we used for

11.

Since

the length parameter L, l/3  of side of lattices so that L ranges from 2 to

r a*ro,
ns = -& ” (21)

we have

(22)

where Yî(r)  is the n-th derivative of Y(r). In plot of various cumulants we used another variable

s related to T by the relation

In Fig. 1, Fig. 2,. . . , Fig. 5, we plot total Ií0  and its derivatives, l?l  through l?,, for sizes rang-

ing from 6 x 6 to 33 x 33 against temperature K-1. Typical precision is 10e4  for free energy,

low3 for rl, 10m2 or better for rz and around 5% for l73, 10% of better for l?4.

In Fig. 6, we replot Fig. 3 to mark the temperature range in E variable which will be trans-

formed into s variable of fixed range [-0.8,1.2].  In subsequent figures, Fig. 6 through Fig. 11, we

plot the scaled singular part of cumulants given by Eq. (22) against s.

In this figures we took analytic part of the cumulants, as 0.0601 for Ton, 0.4266 for rla, -1.4
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.
FIG. 1.

FIG. 2.

0 . 4 0.6 0.8 1 1.2 1.4 1.6
l/K

-f (free  energy density) against K -I. Vertical line in the middle marks the critical temperature I&-’

= 0.99497. Large L curves sink to the bottom in the righthand side (low temperature side).

0 . 4 0.6 0.8 I 1.2 I.4 1.6
l/K

rl (internal energy density) against temperature K -I. Vertical line marks the critical temperature

KC-l = 0.99497. Large L curves stack on top of IowerL  curves in the righthand side (high temperature

side).
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FIG. 3.

FIG. 4.

AN EFFICIENT MONTE CARLO TECHNIQUE FOR CONTINUOUS...

0.4 0.6 0.8 1 1.2 1.4 1.6
l/K

VOL. 30

I?2 (proportional to specific heat) against temperature K-ë.  Vertical line marks the critical tempera-

ture &-’ = 0.99497. As L grows, the position of peaks moves toward the bulk critical temperature.

150 , , ? I I

100

50

0

-50

-100

I I

-150 ’ L I

0.4 0.6 0.8 1 1.2 1.1 1.6

l/K

r3 (proportional to the first derivative of specific heat) against temperature K-l.  Vertical line marks

the critical temperature KC“ = 0.99497. The vertical scale is order of 100.0 while analytic part of this

quantity is estimated to be about 2.6.

---_-.
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0 . 4 0.6 0.8 1 1.2 1.1 1.6
l/K

F I G .  .S. Ií,  (proportional to the second derivative of specific heat) against temperature K-l. Vertical line

marks the critical temperature K,-’  = 0.99497. The vertical scale is order of 10000.0 while analytic

part of this quantity can be neglected in the estimating scaling function.

6

i

0.6 0.1 0.8 0.9 1 1.1 1.2 1.3 I.4 1.5
l/R

FIG. 6. I-k (p p t’ro or Ional to specific heat) against temperature K ëI, are redrawn to mark the range of
temperature which transform to a fixed range of s, [-OS, 1.21.
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0

-1

-2
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

5

ITIG. 7. r&L2 againsts. Asymptotic limit of the family curves as L grows to infinity should give the universal

function -Y(s). 0.601 is used for l?,.

-0.8 -0.6 - 0 . 4 -0.2 0 0.2 0.1 0.6 0.8 I
5

FIG 8. . r Lo-"'Is against S. Asymptotic limit of the family curves as L grows to infinity should give the first

derivative of universal function -yílí(S).  0.4266 is used for rlO.

__L ë_-  .__ .,,_: . .
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.
FIG. 9.

1’ 1 I 1 I
-0.8 -0.6 - 0 . 4 -0.2 0 0.2 0.4 0.6 0.8 1

5

r$_wJ against S. Asymptotic limit of the family curves as L grows to infinity should give the second

derivative of universal function, -Yí2)(~).  -1.4 is used for rzn. It is noteworthy that the analytic part

of the specific heat is negative.

-5 ’ I I
-0.0 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

5

FIG. 10. r3sL2-3ív  against S. Asymptotic limit of the family curves as L grows to infinity should give the third

derivative of universal function, -Yí3)(~). Accuracy in measurement of 3rd cumulant is not so good

although the unscaled r3ís  diverge rather rapidly as L grows large Here 2.8 is used for rk.
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FIG. 11 .

-30 ’ I I I I I
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

s

r&w against s. Asymptotic limit of the family curves as L grows to infinity should give the third

derivative of universal function, -fi4)(s). A ccuracy in measurement of 4th cumulant is not good al-

though the unscaled rbís  diverge enormously as L grows large. Analytic part if any would be

drowned in the statistical errors. However scaling behavior of this quantity may be used for an es-

timation of the exponent, v since L2e4ív.IS rather sensitive to the value of V.

for rh, 2.8 for rk, 0.0 for r,,.
These values are obtained using finite size scaling prediction at the bulk critical tempera-

ture E = s = 0 so that scaled I?,, all fall into a single point at the bulk critical temperature. In

this paper we are mainly concerned to the test. whether the result of the continuous functional

Monte Carlo technique confirms the two scale factor universality prediction, we used exact criti-

cal temperature I&- 1 = 0.99497 and the exponent v = 516 .7 Since 1/v is less than 2, singular

part of both lYos and rh vanish in the large L limit making analytic parts just bulk values. They

are simply critical values of - free energy and internal energy as we can see from the Eqs. (18)

and (19). These values are exactly known to be,7 -2.0702(l) and -1.5447.

Since our energy density is measured 2.0 above the ground state, our estimated critical bulk

free energy density and internal energy are -2.0702(l) and -1.5447 and they agree with the exact

values almost to the machine precision.

Figs. 6-10 shows general tendency that we have claimed in section 3. As the size L grows

large the scaled cumulants Eq. (22) approach to the -fin) since the approximation of constant

analytic part over the fixed range of 5 holds better and better. It should be also noted that the

analytic part of 3rd cumulant is about 2.8 that it can almost negligible. In fact in the 4th cumulant

-- _. -
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we have neglected analytic part altogether since the effect of the analytic part could well be

drowned inside of statistical error of the simulation.

It should be remarked that while the accuracy of simulation is better for lower order

cumulants, the singular part of these functions either diminish or grows moderate rate even if

it diverges as the system size grows. On the other hand we have less precision for higher order

cumulants although they diverge enormous rate. In the case of free energy the singular part is

only a minute fraction of the total free energy and it would easily be drowned into the error

bound of simulation as the system size grows. These two trends are competing each other so

that optimum order of the cumulant which furnish best result in estimating scaling function

would be either lst, or 2nd cumulant, namely internal energy or specific heat.

V. CONCLUSION AND DISCUSSION

We have demonstrated from the continuous functional Monte Carlo data not only that the

two scale factor universality hypothesis holds good but also the scaling functions can be es-

timated from the data. In fact as a first approximants for these quantities we could take the

. scaled cumulants of the largest L. In fact the deviation of the last two scaled cumulants are al-

most within statistical deviation.

Next improvement in estimating scaling functions Y(ì)  is to use of linearly varying analytic

part near the bulk critical point. Using the first approximant for Ylcn), we can reverse the trans-

formation given by Eq. (22) and subtracting -L-(d-n/v)Yl(n)(t)  from the unscaled cumulants we

can estimate the analytic parts of the cumulant in r scale. Transforming t variable back to E vari-

able, we can obtain the slowly (linearly) varying analytic parts of cumulants. We may use these

analytic parts in estimating next order approximants of scaling functions.

In the above consideration we have altogether neglected any correction to scaling occur-

ring either from nonlinear field or from irrelevant scaling field. In the above analysis the numeri-

cal evidence indicate that these corrections are indeed negligible. However in general case,

these corrections may be necessary in estimating scaling functions.
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