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A ‘‘non-dynamical’’ way of describing
room-temperature paramagnetic manganese oxide†

Sangmoon Yoon,ab Seoung-Hun Kang,‡b Sangmin Lee,ab Kuntae Kim,a

Jeong-Pil Song,§b Miyoung Kim*a and Young-Kyun Kwon *b

We present a new approach based on static density functional theory (DFT) to describe paramagnetic

manganese oxides, representative paramagnetic Mott insulators. We appended spin noncollinearity and a

canonical ensemble to the magnetic sampling method (MSM), which is one of the supercell approaches

based on the disordered local moment model. The combination of the noncollinear MSM (NCMSM) with

DFT+U represents a highly favorable computational method called NCMSM+U to accurately determine

the paramagnetic properties of MnO with moderate numerical cost. The effects of electron correlations

and spin noncollinearity on the properties of MnO were also investigated. We found that the spin

noncollinearity plays an important role in determining the detailed electronic profile and precise

energetics of paramagnetic MnO. Our results illustrate that the NCMSM+U approach may be used for

insulating materials as an alternative to the ab initio framework of dynamic mean field theory based on

DFT in the simulation of the room-temperature paramagnetic properties.

1 Introduction

Manganese oxides have received a lot of attention as they are
among the most promising materials for applications in acqui-
sition and storage of sustainable energy, for example, in
catalysts, supercapacitors, and lithium-ion batteries. They have
the potential to afford various oxidation or reduction reactions
as manganese has a multivalent character, and nanosynthesis
and surface treatment techniques are also being rapidly developed
to support such capabilities. Furthermore, manganese is an earth
abundant and eco-friendly element. Thus, attempts are underway
to use nano-sized manganese oxides in energy-related devices.1–22

For more effective and efficient development of such devices,
it is highly required to investigate systematically and theoretically
the room-temperature properties of nanostructured manganese
oxides.

Manganese oxides are usually paramagnetic Mott insulators
under ambient conditions, exhibiting a Mott insulating state despite
spin fluctuations because of the strong correlations of d electrons.
Thus, for the theoretical study of manganese oxides, it is a primary
task to confirm the Mott insulating states. Unfortunately, density

functional theory (DFT) calculations fail consistently to describe
such Mott insulating states because of their spurious self
interactions. In fact, this failure had been one of the central
issues in DFT studies of the past decades. Now, it is partially
resolved through the Coulomb-interaction corrections of
localized electrons such as DFT+U,23,24 hybrid functionals,25,26

GW27 or self-interaction-correction.28 Manganese oxides have
also been intensively studied by adopting these approaches.29–36

However, all these extended DFT methods require the materials
to be in a spin- or orbital-ordered state, because the electron
correlations are still corrected at the static mean field level.

A consistent description of paramagnetic Mott insulators
became possible after the development of DFT plus dynamic
mean field theory (DFT+DMFT),37,38 where both strong correla-
tions and spin fluctuations are spontaneously involved through
the frequency-dependent self-energy. It was, for example, used
to understand the paramagnetic Mott insulator to metal transi-
tion of MnO.39 Moreover, this method has provided a new
direction in the research of many strongly correlated materials,
such as heavy fermion systems40,41 and high-temperature
superconductors.42,43 However, DFT+DMFT is not suitable for
the material design of paramagnetic Mott insulators, because
its application to surfaces, interfaces, defects, or various other
configurations with large super cells is nearly unfeasible.
Meanwhile, disordered local moment (DLM) based DFT+U
calculations have also been recently discussed.44 The DLM-based
approach involves the effects of spin fluctuations at the static limit.
It has successfully described high-temperature properties of some
specific correlated systems, for example, several transition-metal
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oxides and nitrides.44–49 The DLM approach has been imple-
mented in DFT+U in two different manners. One employs the
Korringa–Kohn–Rostoker (KKR) Green’s function method with
the coherent potential approximation (CPA), and the other uses
supercells that imitate magnetic disorder. The KKR-CPA
method can calculate the electronic structure of disordered
systems efficiently, but the expansion beyond the bulk calcula-
tion is limited because of the spherical approximation for
the one-electron potential. On the other hand, the supercell
approach does not have such restrictions, but it generally
requires hundreds of atoms to minimize the spurious interactions
from the periodic repetition of magnetic disorder. That is, both
approaches have advantages and disadvantages. As computing
power has increased rapidly and the need for material research has
grown, the supercell approach has naturally gained more atten-
tion, and related methodologies have been further developed.44–47

The magnetic disorder in a paramagnetic state can be
characterized by the spin–spin correlation function, defined as

Fah i ¼ 1

N

X

i;j2a
Si � Sj ; (1)

where a and N refer to the index of the specific coordination
shell and the total number of spins, respectively. Si is the spin
angular momentum of the ith spin. For ideal paramagnetic
disordered materials, hFai in eqn (1) is zero regardless of the
type of coordination shell. Supercells of the DLM model should,
in principle, involve the nature of paramagnetic disorder, but it
is practically hard to construct such supercells because of their
finite size. For a realistic supercell-based DLM calculation, two
approximate approaches were proposed.44 The first approach
employs a special quasirandom structure, where the spin–spin
correlation function for the finite coordination shell vanishes.
The other approach uses randomly disordered magnetic structures
and describes the paramagnetic disorder as their average, which is
called the magnetic sampling method (MSM). In the MSM, it is
supposed that the spin–spin correlation function is averaged out
as the number of magnetic samples increases.

Generally, in Mott physics, quasiparticles can emerge with
renormalized masses and finite lifetimes, displaying a three-
peak spectral structure. However, for an insulating phase,
spectral weight transfers from the quasiparticle peak to the
Hubbard bands, and thus quasiparticles eventually disappear

at the Mott transition and dynamical charge correlations become
drastically slow. Hence, it is expected that the DLM-based DFT+U
calculation could describe the physical properties of paramagnetic
Mott insulators if the effects of magnetic disorder and static self-
energies are included adequately. We, therefore, further improved
the MSM approach to be accurate and computationally scalable
for paramagnetic Mott insulators. Specifically, we revised the
MSM approach to consider the spin noncollinearity and to take
the canonical ensemble average. We named this approach ‘‘non-
collinear MSM based on DFT plus U’’ (NCMSM+U); it is illustrated
in Fig. 1. The motivation and importance of the inclusion of spin
noncollinearity will be discussed in the results section.

To verify the validity and efficiency of our NCMSM+U
approach, we selected paramagnetic MnO, which is not only a
representative example of paramagnetic manganese oxides
where quasiparticles are suppressed, but also an important
material for real applications. It has been directly utilized
for oxygen evolution reaction catalysts6–8 or for lithium ion
batteries.15–17 Thus, the accurate estimation of various room-
temperature properties of paramagnetic MnO is an important
task for rational device design in real applications. In this
paper, we report that the NCMSM+U approach yields various
properties of paramagnetic MnO comparable to those calculated
from DFT+DMFT. We also investigate the effects of electron
correlations and spin noncollinearity on those properties, and
discuss the application of our NCMSM+U method to para-
magnetic materials with superexchange interactions.

2 Computational details
and methodology

We constructed magnetically noncollinearly disordered super-
cells for NCMSM using two random number generators, which
independently determine the azimuthal and polar angle of
each magnetic moment. We set the initial magnitude of each
magnetic moment to an experimental value of 4.58 mB,50 where
mB is the Bohr magneton, with a constraint of the total magnetic
moment to be zero (see the ESI†). Although a larger supercell
would provide better results, such as the effects of the
spin correlations, we used a 2 � 2 � 2 supercell with 64 atoms
(32 manganese atoms and 32 oxygen atoms) for NCMSM due to
limited computational resources. A series of DFT calculations

Fig. 1 Schematic illustration of the noncollinear magnetic sampling method (NCMSM) for the paramagnetic Mott insulating phase of MnO. Detailed
explanations are given in the text.
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were conducted using the Vienna ab initio simulation package
(VASP) code.51 Perdew–Burke–Ernzerhof plus Hubbard correction
(PBE+U) was used for the exchange–correlation functional,52 in
which the double-counting interactions were corrected in the fully
localized limit (FLL).24,53 Here, it should be discerned that the
parameter required in the noncollinear model is the on-site
Coulomb interaction U whereas that required in the collinear
model is the effective on-site Coulomb interaction Ueff.

53 A plane
wave basis set with a cutoff energy of 500 eV was used to expand
the electronic wave functions, and the valence electrons were
described using the projector-augmented wave potentials. The
lattice constants in all the cases were fixed to the experimental
value of 4.4315 Å50 to prevent the artificial deformation that would
be induced by the magnetic disorder. A G-centered 4 � 4 � 4
Monkhorst–Pack k-point grid was used for sampling the Brillouin
zone. The antiferromagnetic phase was also investigated using the
same parameters as used in the magnetic disordered phase to
clearly see the effects of magnetic disorder, without considering
the significant structural distortion the antiferromagnetic MnO54

undergoes.
We not only implemented spin noncollinearity into the

MSM approach, but also introduced a sample averaging scheme
in the canonical ensemble, in which a new configuration
contributed to the physical properties depending on the weight
of each magnetic sample proportional to the Boltzmann factor.
Then, any physical quantity in the paramagnetic phase, XPM, was
evaluated by an ensemble average defined by

XPM ¼

P
i

Xie
�Ei=kBT

Z
;

where Z is a partition function defined by
P
i

e�Ei=kBT . Xi and Ei

are the specific physical quantity and the energy of the ith
microstate, respectively, and kB is the Boltzmann constant.
In particular, the total energy, density of states (DOS) and local
magnetic moment distributions were all computed by taking the
ensemble average. We used seven different disordered structures
for the ensemble average at T = 300 K. The probability of finding
each microstate was in the range of 12 to 16% at room temperature,
implying that there was no certain specific microstate dominant in
the ensemble of paramagnetic MnO (see Fig. S1 in the ESI†).

3 Results and discussion
3.1 Electronic structures of paramagnetic MnO

Fig. 2(a) shows the DOS of paramagnetic MnO determined
using the NCMSM+U calculation. We chose the on-site Coulomb
interaction to be U = 4 eV. This value enabled us to obtain results
that agree well with the experimental measurements, which will be
shown in the following subsections. The paramagnetic MnO DOS
calculated by the NCMSM+U approach reveals features distinct
from that of its antiferromagnetic counterpart shown in Fig. 2(b).
It displays a wider bandwidth and a narrower band gap in the
paramagnetic state compared to those in the antiferromagnetic
state. Moreover, unlike the DOS of the antiferromagnetic phase,

the DOS of the paramagnetic phase exhibits delocalized electronic
characteristics in the valence band, as seen in Fig. 2(a). Such
behavior gives rise to crucial consequences for electron correla-
tions in the strongly-correlated MnO. It is noteworthy that, for the
paramagnetic MnO, our numerical results are in good agreement
with previous estimates from DFT+DMFT39 and the experimental
XPS spectra.39 This result can be considered a step-up improve-
ment in static DFT+U based calculations for strongly correlated
systems. In usual DFT calculations, nonmagnetic states have been
used to mimic paramagnetic states. We checked that the non-
magnetic MnO is metallic even in the presence of the Hubbard
corrections (see Fig. S2 in the ESI†). This is consistent with the
previous knowledge that DFT+U requires spin- or orbital-ordered
states. Our NCMSM+U method provides an alternative way of
achieving what the DFT+DMFT detects.

3.2 Effects of electron correlations

We investigated the effects of strong electron correlations on
the electronic structure of the paramagnetic MnO by adjusting
the Hubbard parameter U from 0 to 7 eV. Fig. 3(a) displays the
total and partial DOSs of the paramagnetic MnO for various U
values. The majority-spin (minority-spin) bands shift down (up)
with U. Here, the valence and conduction bands of MnO
correspond one-to-one with the majority- and minority-spin
bands, since the Mn ions have d5 high-spin configuration.
In addition, the band shift is accompanied by a band gap
increase. The band gap here is of the charge-transfer type. At a
relatively high U, the system enters a charge transfer state with
a minority-band shift from the Mott-Hubbard phase, as seen in
Fig. 3(a). Thus, our results suggest that the paramagnetic MnO
is a mixed type of Mott insulator with a band gap of 2.6 eV.

We also investigated the electron correlation effect on
the magnetic properties of paramagnetic MnO. We produced
a canonical ensemble composed of individual microstates or

Fig. 2 DOSs of (a) paramagnetic (PM) and (b) antiferromagnetic (AFM)
MnO phases calculated with U = 4 eV. The PM DOS was obtained using our
NCMSM+U approach. The black solid line represents the total DOS; the
purple and red solid lines indicate the partial DOSs of Mn and O,
respectively.
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paramagnetic configurations, which were generated through
the self-consistent procedure performed using our NCMSM+U
approach. The initial magnetic moments were chosen to be 4.58 mB,
corresponding to the experimental value. Fig. 3(b) shows
the distribution of the local magnetic moments calculated with
different values of U. It is clearly shown that the choice of U
values determines the distribution of the local magnetic
moments in paramagnetic states. The mean value of each
magnetic moment distribution obtained for a given U increases
monotonically from 4.33 to 4.73 mB with U. This result is

consistent with the previous knowledge that the on-site Coulomb
repulsion enhances the spin- and orbital-polarization.55 On the
other hand, the distribution width decreases with increasing U,
that is, the local magnetic moments are widely (narrowly) distri-
buted for small (large) values of U. From our NCMSM+U
calculation, we determined an on-site Coulomb parameter of
U = 4 eV, because this value yields a mean magnetic moment value
of 4.59 mB, which is the closest value to the experimental value.

The interatomic superexchange couplings are directly related
to the on-site Coulomb interactions. We extract the exchange

Fig. 3 The effects of electron correlations on the electronic and magnetic properties of paramagnetic MnO. (a) DOSs of paramagnetic MnO with
different values of on-site Coulomb interaction U. (b) The distribution of local magnetic moments of paramagnetic MnO for different values of U, which
are represented by different colors. (c) Dependence of Heisenberg exchange couplings J1 (depicted by squares with a black line) and J2 (circles with a red
line) with the nearest and next-nearest neighbors, respectively, on the on-site Coulomb interaction U.
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coupling constants by mapping the energies of disordered states
onto the Heisenberg Hamiltonian, obtained in the limit of U -N,

H ¼ J1
X

hi;ji
Si � Sj þ J2

X

hhi;jii
Si � Sj ; (2)

where hi,ji and hhi,jii denote the first- and second-nearest neighbor
Mn–Mn pairs, and J1 and J2 are their corresponding exchange
coupling constants. Fig. 3(c) shows the exchange coupling con-
stants J1 and J2 in the units (K) of absolute temperature, as a
function of 1/U, which were fitted over data obtained from seven
different disordered structures. Both J1 and J2 decrease monotoni-
cally with increasing U, and are all positive, meaning that both the
first- and second-nearest exchange interactions are antiferromag-
netic regardless of the strength of U interactions. Our fitted J1 and
J2 values are almost linear in the large U region or for small 1/U as
shown in Fig. 3(c), which is consistent with the well-known linear
expression J = 2t2/U for the superexchange coupling in the strong
U regime. Our NCMSM+U with U = 4 eV yielded J1 = 13.9 K and
J2 = 12.8 K, resulting in their ratio being J2/J1 E 0.92, which is
in good agreement with experimental results as shown in
Table 1.49,56–60

3.3 Estimation of Néel temperature

To estimate the Néel temperature TN, which is the transition
temperature from the antiferromagnetic (T o TN) to the para-
magnetic state (T 4 TN), we evaluated the Helmholtz free
energies FAFM and FPM of the antiferromagnetic and paramag-
netic states in MnO as a function of temperature T. In general,
the Helmholtz free energy F of a system, given by F = E� TS, can
be determined by computing the internal energy E, and the
entropy S at a given temperature T. The entropy S(T) of a
magnetic system under the mean-field approximation can be
expressed as

S(T) = kB ln[M(T) + 1], (3)

where M(T) indicates the mean value of the local-magnetic-
moment distribution. For the antiferromagnetic case, M(T)
should be zero at the mean-field level, and thus its Helmholtz
free energy FAFM is simply given in terms of the internal energy

FAFM(T) = EAFM,

independent of temperature. On the other hand, FPM, the free
energy of the paramagnetic phase, can be expressed as

FPM(T) = EPM(T) � kBT ln[M(T) + 1],

where EPM(T) is the ensemble average of the internal energies
calculated for seven different spin configurations. The tem-
perature dependence of both the internal energy and the mean
local magnetic moment was obtained through the Boltzmann

factors used in the ensemble average. Fig. 4(a) shows the
evaluated Helmholtz free energies of both the antiferro-
magnetic and paramagnetic states of MnO as a function of
temperature T for U = 4 eV. The paramagnetic free energy,
which is higher than the antiferromagnetic free energy at low
temperatures, crosses FAFM at T E 114 K and becomes lower
than the antiferromagnetic counterpart above the crossover
temperature. The crossover temperature corresponding to the
Néel temperature was estimated to be TN = 114 K, which is
surprisingly close to the experimental value of 118 K.61

In addition, we estimated the crossover temperatures for
several different values of U. The corresponding free energies at

Table 1 Exchange coupling constants J1 and J2 (in K) and their ratio J2/J1, and the comparison with other experimental values

NCMSM+U (this work) Expt. (ref. 56) Expt. (ref. 57) Expt. (ref. 58) Expt. (ref. 59) Expt. (ref. 49)

J1 13.9 10 8.9 7.2 8.7 —
J2 12.8 11 10.3 3.4 10.4 —
J2/J1 0.92 1.10 1.16 0.47 1.20 1.49

Fig. 4 (a) Per-atom Helmholtz free energy of paramagnetic (PM, red solid
line) MnO relative to that of antiferromagnetic (AFM, black solid line) MnO,
which is set to zero, obtained with U = 4 eV. The temperature at the
crossover point is approximately 114 K, which corresponds to the Néel
temperature. The Néel temperature of MnO is experimentally known to
be 118 K. (b) The crossover temperatures corresponding to the Néel
temperature estimated with various values of U.
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each U are presented in Fig. S3 of the ESI.† As shown in
Fig. 4(b), the Néel temperature decreases from 250 K to 50 K
with increasing U. This trend is closely related to the weakening
of the exchange interactions. For comparison, we also esti-
mated the Néel temperature at the PBE level. The result was
more than twice that obtained with our NCMSM+U approach,
which is consistent with the previous PBE-based result.44

3.4 Importance of spin noncollinearity in paramagnetic MnO

The introduction of spin noncollinearity is a major feature of
our NCMSM+U approach compared to the conventional MSM.
It is well known that, in most magnetic systems, the exchange
interactions can be described by the bilinear exchange interac-
tions. However, in some systems, the biquadratic exchange
interactions cannot be ignored. The Heisenberg Hamiltonian
that contains the biquadratic terms is generally expressed as

H ¼
X

iaj

JijSi � Sj þ
X

iaj

KijðSi � SjÞ2

�
X

a

JanahFai þ
X

a

KanahCai;
(4)

where Kij is the biquadratic exchange coupling constant. In the
approximate Hamiltonian in the second row in eqn (4), a is the
index of the coordination shell and na indicates the number
of atoms in the ath coordination shell. Here, hFai and hCai
are the bilinear and biquadratic spin-correlation functions,
respectively, and Ja and Ka are their corresponding exchange
coupling constants. In the case of ideal paramagnetic disorder,
hFai should be 0 in both collinear and noncollinear models.
However, hCai has different values depending on whether the
spin noncollinearity is allowed or not. hCai is estimated to be
1 in the collinear disorder model and 1/3 in the noncollinear
counterpart. This implies that the NCMSM approach would
yield significantly different computational results from the
conventional MSM, unless the biquadratic interactions are
sufficiently weak, or Ka is sufficiently small.44 Interestingly,
MnO was directly studied by Anderson62 and Orbach,63 who
pointed out that its biquadratic superexchange interactions
might have observable magnitudes. We, therefore, revised
the MSM approach to include the spin noncollinearity for
more accurate predictions of the high-temperature properties
of MnO.

To examine the effects of the spin noncollinearity, we
compared our computational results of paramagnetic MnO
obtained by the NCMSM+U approach to those by the MSM+U
approach. We designed all the computational details identically
except for the spin noncollinearity. Fig. 5 shows the DOS of the
paramagnetic state (a) computed by the conventional MSM+U
approach and that of the antiferromagnetic state (b). Even the
conventional MSM+U approach described the delocalized
valence band, which is a significant feature of paramagnetic
MnO, as shown in Fig. 2(a). However, a remnant peak, which
was not observed from NCMSM+U, appears at the top of the
valence band in the result of MSM+U. Furthermore, we also
estimated the Néel temperature based on the collinear

calculations using the same method as described in Sec. 3.3.
Here, the Néel temperature was estimated to be TN E 189 K,
which is 60% higher than the experimental Néel temperature.
Note that the Néel temperature estimated from our noncollinear
calculation is almost equal to the experimental value. These
results indicate that the biquadratic exchange interaction is
significant in MnO and, thus, spin noncollinearity should be
taken into account for accurate prediction of the physical proper-
ties of paramagnetic MnO.

It is noteworthy that the antiferromagnetic state of MnO
does not require spin noncollinearity even if the biquadratic
exchange interactions are considered. MnO has type-II anti-
ferromagnetic ordering at low temperature, in which the
magnetic moments are all aligned in parallel. As a result, the
spin-correlation functions of the collinear and noncollinear
models are exactly the same: hFai represents a specific value
depending on the coordination shell and hCai is always 1.
We confirmed that the DOS of antiferromagnetic MnO based
on the collinear model shown in Fig. 5(b) is equivalent to that
based on the noncollinear counterpart shown in Fig. 1(b).

Fig. 5 Results of collinear calculations: DOSs of MnO in the (a) para-
magnetic and (b) antiferromagnetic states. (c) Per-atom Helmholtz free
energy of paramagnetic (PM, red solid line) MnO relative to that of
antiferromagnetic (AFM, black solid line) MnO, which is set to zero,
obtained with Ueff = 4 eV.
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4 Conclusions

We employed the noncollinear magnetic sampling method
(NCMSM) with DFT+U (NCMSM+U) to calculate the paramag-
netic Mott insulating state of MnO and investigated its room-
temperature properties. The NCMSM+U approach accurately
predicts the physical properties of paramagnetic Mott insulator
MnO at reasonable computational cost. Specifically, we estimated
the electronic profile, distribution of local magnetic moments,
superexchange coupling constants, and Néel temperature.
Furthermore, our work demonstrated that the inclusion of spin
noncollinearity plays a crucial role in accurate description of
paramagnetic Mott insulators where superexchange inter-
actions exist. It significantly affects the detailed electronic
profile and precise energetics of paramagnetic MnO. The
NCMSM+U approach is of value in terms of scalability to other
supercell calculations as compared to KKR-CPA or DFT+DMFT.
We, therefore, expect our results to help in providing a basis for
the rational design of energy materials using paramagnetic Mott
insulators. It should be noted that the NCMSM+U approach
cannot be used for paramagnetic metals with fast dynamic charge
correlations.
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