Supporting Information for

# Mechanism for the enhancement of the oxygen diffusivity by cation substitution in <br> $$
\mathbf{L a}_{2-x} \mathbf{S r}_{x} \mathbf{C u O}_{4}
$$ 

Sohee Park, ${ }^{\dagger}$ Young-Kyun Kwon, ${ }^{,+, \uparrow, \ddagger}$ and Changwon Park ${ }^{*}{ }^{\star}$<br>$\dagger$ Department of Information Display, Kyung Hee University, Seoul 02447, Korea<br>$\ddagger$ Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Korea

【School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722, Korea

E-mail: ykkwon@khu.ac.kr; cwparksnu@gmail.com

## Derivation of $P(\alpha, t)$

We assume there are $n$ hopping paths and per unit attempt time $\delta t$, there is probability $p_{\alpha}$ for a vacancy to hop to paths $\alpha$. If the hopping to each path is independent, the probability $P(k)$ that the first hopping happens at the $k$-th trial follows the geometric distribution

$$
\begin{equation*}
P(k)=\left(\prod_{\alpha=1}^{n}\left(1-p_{\alpha}\right)\right)^{(k-1)}\left(1-\prod_{\alpha=1}^{n}\left(1-p_{\alpha}\right)\right) \tag{1}
\end{equation*}
$$

Equation (1) does not exclude the probability that more than one hopping occurs during a single try, which is clearly unphysical. To avoid this problem, we extend the domain of $P$ from integer variable $k$ to continuous variable $t$ and defines $\frac{p_{\alpha}}{\delta t} \equiv \overline{p_{\alpha}}$. By $\delta t \rightarrow 0$, we can make the probability of unphysical simultaneous hopping during $\delta t$ approaches zero. The probability $P(t)$ that the first hopping happens at time $t$ now becomes

$$
\begin{equation*}
P(t)=N\left(\prod_{\alpha=1}^{n}\left(1-\overline{p_{\alpha}} \delta t\right)^{\frac{t}{\delta t}-1}\left(1-\prod_{\alpha=1}^{n}\left(1-\overline{p_{\alpha}} \delta t\right)\right),\right. \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
N=\frac{\log \left(\prod_{\alpha=1}^{n}\left(1-\overline{p_{\alpha}} \delta t\right)\right.}{\left(\prod_{\alpha=1}^{n}\left(1-\overline{p_{\alpha}} \delta t\right)-1\right) \delta t} \tag{3}
\end{equation*}
$$

is a normalization factor for $P(t)$ to satisfy $\int_{\delta t}^{\infty} P(t) d t=1$. By taking a limit $\delta t \rightarrow 0$, we can obtain Eq. (2) of main manuscript. Because each hopping is independent, the joint probability $P(\alpha, t)$ is simply the probability $p_{\alpha}$-weighted partition of $P(t)$ and Eq. (1) of main manuscript holds.

## Equilibrium concentrations of charge states of oxygen vacancies

The equilibrium concentrations of each charge states of oxygen vacancy can be derived from the following four relations.

$$
\begin{equation*}
k_{1}\left[\mathrm{~V}_{\mathrm{O}}\right]\left[\mathrm{h}^{\bullet}\right]=k_{1}^{\prime}\left[\mathrm{V}_{\mathrm{O}}^{\bullet}\right] \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
k_{2}\left[\mathrm{~V}_{\mathrm{O}}^{\bullet \bullet}\right]\left[\mathrm{h}^{\bullet \bullet}\right]=k_{2}^{\prime}\left[\mathrm{V}_{\mathrm{O}}^{\bullet \bullet}\right]  \tag{5}\\
{\left[\mathrm{V}_{\mathrm{O}}\right]+\left[\mathrm{V}_{\mathrm{O}}^{\bullet}\right]+\left[\mathrm{V}_{\mathrm{O}}^{\bullet \bullet}\right]=\left[\mathrm{V}_{\mathrm{O}}^{\mathrm{tot}}\right]}  \tag{6}\\
{\left[\mathrm{h}^{\bullet}\right]+\left[\mathrm{V}_{\mathrm{O}}^{\bullet}\right]+2\left[\mathrm{~V}_{\mathrm{O}}^{\bullet \bullet}\right]=[\mathrm{Sr}],} \tag{7}
\end{gather*}
$$

where $k_{i}(i=1,2)$ are the reaction rate constants of Eq. (5) given by

$$
\begin{equation*}
\frac{k_{1(2)}}{k_{1(2)}^{\prime}}=\exp \left(-\frac{\Delta E_{1(2)}}{k_{B} T}\right) . \tag{8}
\end{equation*}
$$

Equations (6) and (7) are the conservation relations of oxygen vacancies and charge, respectively. For given $\left[\mathrm{V}_{\mathrm{O}}^{\mathrm{tot}}\right]$ and $[\mathrm{Sr}],\left[\mathrm{V}_{\mathrm{O}}\right],\left[\mathrm{V}_{\mathrm{O}}^{\bullet}\right],\left[\mathrm{V}_{\mathrm{O}}^{\bullet \bullet}\right]$, and $\left[\mathrm{h}^{\bullet}\right]$ can be obtained by solving a cubic equation derived from the four equations above. Due to the large reaction energy $\Delta E_{1}$ and $\Delta E_{2},\left[\mathrm{~h}^{\bullet}\right]$ is much smaller than the concentrations of oxygen vacancies, and in this case, we can express the vacancy concentrations in terms of $[\mathrm{Sr}] /\left[\mathrm{V}_{0}^{\text {tot }}\right]$.

