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INTRODUCTION

Carbon nanotubesl ,2 are narrow seamless graphitic cylinders, which show an unusual
combination of a nanometer-size diameter and millimeter-size length. This topology,
combined with the absence of defects on a macroscopic scale, gives rise to uncommon
electronic properties of individual single-wall nanotubes3

,4, which depending on their
diameter and chirality, can be either metallic, semiconducting or insulatingS- 7 .

In this paper we focus attention only on metallic nanotubes and in particular
on the so-called "armchair" nanotubes. An armchair nanotube is a graphite tube in
which the hexagon rows are parallel to the tube axis. If n is the number of carbon
dimers along the nanotube circumference the tube will be labeled as (n, n) nanotube.
One of the most important properties of the armchair nanotubes is that they behave
like a mono-dimensional metal and this is directly connected with their structure. The
electronic wave-length in fact is quantized around the circumference of the tube because
of the periodic boundary conditions. This gives rise to mini-bands along the tube axis
and the tube is metallic or insulating whether or not one or more mini-bands cross the
Fermi energy. In the case of armchair nanotubes two mini-bands along the tube axis
cross the Fermi energy8, therefore, according to scattering theory9, the conductance
is expected to be 2Go, where Go = 2e2/h~(12.9 knt l is the quantum conductance.
Direct evidence of the de-localization of the wave function along the tube axis has
been already shown10,11, while a direct measurement of the conductance quantization
for single-wall nanotubes is still missed (for an introduction to electronic transport in
carbon nanotubes see reference 12).

The situation for multi-wall nanotubes is rather different. A multi-wall nanotube
consists of several single-wall nanotubes inside one another, forming a structure remi
niscent of a "Russian doll". A section of a double-wall (5,5)@(10,lO) armchair nanotube
is presented in figure 1.

Recent measurements13 of the conductance in multi-wall nanotubes have raised a
significant controversy due to the observation of unexpected conductance values and of
ballistic transport at temperatures far above room temperature. In these experiments
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Figure 1: Section of a (5,5)@(10,10) "armchair" nanotube.

several multi-wall nanotubes are glued to a gold tip, which acts as the first electrode,
with a colloidal silver paint. The second electrode is made by a copper bowl containing
mercury, which provides a gentle contact with the nanotube. The tip is lowered into
the mercury and the two-probe conductance is measured as a function ofthe immersion
depth of the tubes into the mercury. The main feature of the experiments is that at
room temperature the conductance shows a step-like dependence on the immersion
depth, with a value of 0.5 Go for low immersion and 1 Go when the tip is further
lowered. The value of 0.5 Go usually persists for small immersion depths (S; 40nm)
and is completely absent in some samples, while the value 1 Go is found for very long
immersion depths, up to 0.5f-lm. Nevertheless some anomalies have been found with
conductances of 0.5 Go lasting for more than 500nm13 .

While the ballistic behavior up to high temperature can be explained by the almost
complete absence of backward scattering14 , the presence of such conductance values
is still not completely understood. In the absence of inter-tube interactions, if one
assumes that m of the nanotubes forming the multi-wall nanotube are metallic and
in contact with both the electrodes, then a conductance of 2mGo is expected for the
multi-wall nanotube. This means that even in the extreme case in which only one
tube is metallic and in contact with the electrodes a conductance of 2Go must be
measured. Therefore the values 0.5 Go and 1 Go are largely unexpected. One possible
explanation, provided by the authors of the experiments, is that only the outermost
tube is responsible for the transport and that the anomalous conductance is the result
of scattering to impurities. Nevertheless both these hypothesis may be challenged.
The first is based on the assumption that, since mercury does not wet the innermost
tubes, it does not provide an efficient electrical contact with the innermost part of the
multi-wall nanotube. This may not be the case because the interaction between the
different walls may be large and the motion of electrons across the structure efficient.
As far as the second hypothesis concerns, it has been shown recently15 that disorder
averages over the tube's circumference, leading to an electron mean free path that
increases with the nanotube diameter. Therefore single impurities affect transport only
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weakly, particularly in the nanotube forming the outermost shell, which has the largest
diameter.

In this paper we address these puzzling measurements and show that the structural
properties of multi-wall nanotubes can explain their peculiar transport. The electronic
band structure of multi-wall carbon nanotubes16- 18

l as well as single-wall ropes19,20 is
now well documented. More recently, it has been shown that pseudo-gaps form near
the Fermi level in multi-wall nanotubes18 due to inter-wall coupling, similar to the
pseudo-gap formation in single-wall nanotube ropes19 ,20. Here we demonstrate that
the unexpected transport properties of multi-wall nanotubes arise from the inter-wall
interaction. This interaction may not only block some of the quantum conductance
channels, but also redistribute the current non-uniformly over the individual tubes.
When only the outermost tube is in contact with one of the voltage/current electrodes l

then this forms a preferred current path and, because of inter-tube interaction, the
conductance of the whole system will typically be smaller than 2Go.

The paper is organized as follows. In the next section we will briefly describe
a general scattering technique to compute the transport properties of finite systems
attached to semi-infinite contacts, both described by a tight-binding Hamiltonian. In
the following section we will discuss the transport in infinite multi-wall nanotubes and
understand which are the effects ofthe inter-tube interaction both on the dispersion and
on the wave-function of the tube. Then we present the results for transport properties
of inhomogeneous multi-wall nanotubes l giving an explanation of the experiments of
reference 13. In this part we will consider different scenarios about the structure of the
electrical contacts. At the end we will make some final remarks.

GENERAL SCATTERING TECHNIQUE

To determine transport properties of finite multi-wall nanotubes, we combine for the
first time, a tight-binding parameterization determined by ab-initio calculations for
simpler structures21 , with a scattering technique developed recently for magnetic multi
layers22 ,23. The use of a tight-binding model is justified by the necessity to deal with
a system comprising a large number of degrees of freedom. This parameterization
has been used to describe detailed electronic structure and total energy differences of
systems with unit cells which are too large to handle accurately by ab-initio techniques.
The electronic structure and superconducting properties of the doped C60 solid24 , the
opening of a pseudo-gap near the Fermi level in a rope consisting of (10,10) nanotubes2o

and in (S,S)@(lO)O) double-wall nanotubes18 are some of the problems successfully
tackled by this technique. The band structure energy functional is augmented by
pairwise interactions describing both the closed-shell interatomic repulsion and the
long-range attractive van der Waals interaction. This reproduces correctly the interlayer
distance and the 0 33 modulus of graphite. Independent checks of this approach can be
carried out by realizing that the translation and rotation of individual tubes are closely
related to the shear motion of graphite. We expect that the energy barriers in tubes
lie close to the graphite value which, due to the smaller unit cell, is easily accessible to
ab-initio calculations25

.

The scattering technique that we used have been recently employed in studies of
giant magnetoresistance22 ,23 and ferromagnetic/superconductor structures26 . It yields
the quantum-mechanical scattering matrix S for a phase-coherent system attached
to external reservoirs. The role of the reservoirs is to inject and collect incoherent
electrons into the scattering region. The energy-dependent conductance G(E) in the
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zero-temperature limit is computed by evaluating the Landauer-Buttiker formula27

G(E) = 2~2T(E) , (1)

where T(E) is the total transmission coefficient evaluated at the energy E (EF in the
case of zero-bias). The formula of equation (1) provides an exact relation between the
conductance of a system and its scattering properties.

The transmission coefficient is evaluated using a scattering technique that com
bines a real space Green function calculation for the incoherent leads and a Gaussian
elimination ( ie "decimation))) algorithm for the scattering region. A general scheme of
the technique is presented in figure 2, where we indicate how a transport problem can
be mapped onto a quantum mechanical scattering problem.

J.l1

(a)

(b)
1

R
T

He:ff

Figure 2: Scheme of the scattering calculation. The system (a) consists in two reservoirs with chemical
potentials J1.1 and f.lz separated by a scattering region. The problem is mapped by using the Landauer
Buttiker formalism onto a quantum mechanical scattering problem (b). The incoming scattering
channels in the leads are calculated through the surface Green function 90. The effective coupling
matrix Heff is computed by "decimating" the internal degrees of freedom of the scattering region. The
total transmission T and reflection R coefficients are then calculated by solving exactly the Dyson's
equation and by using a generalization of the Fisher-Lee relations.

Suppose the total Hamiltonian H for the whole system (nanotubes plus external
leads) can be written

(2)

where H L and H R describe respectively the semi-infinite left-hand side and right-hand
side lead, HL - NT and HNT - R are the coupling matrices between the leads and the
nanotube and H NT is the Hamiltonian ofthe nanotube. In what follows we will consider
the leads themselves to be carbon nanotubes, whose number of walls depends on the
position of the electrical contacts. This is justified when the transport bottleneck is
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(3)

formed by the nanotubes and not to the metal-nanotube contacts. As far as we know
detailed ab-initio analysis of metal/nanotube interaction is still not available.

The surface Green function g& of the leads are calculated by numerically evaluating
the general semi-analytic formula given in reference 22. One of the key-points of such
a calculation is to compute the scattering channels in the leads. Suppose z to be the
direction of the transport and the Hamiltonian of the leads to be an infinite matrix of
trigonal form with respect to such a direction, with the matrices Ho and HI respec
tively in the diagonal and off-diagonal positions. Therefore the dispersion relation for
electrons in a Bloch state

nl. 1 ikz A.
'f'z = 1j2e 'f'k

vk

and moving along z with unit flux can be written as

(Ho+ Hie ik + H_Ie- ik
- E)<Pk = 0 , (4)

where Vk is the group velocity corresponding to the state (3) and H_ I = Ht (Ho = HJ).
Note that the matrices Ho and HI describe respectively the interaction within a unit
cell and the interaction between adjacent cells. If a unit cell possesses M degrees of
freedom, these matrices will be M x M matrices. Moreover <Pk is a M dimensional
column vector which describes the transverse degrees of freedom of the Bloch-function.
The Green function in the leads is constructed by adding up states of the form of
equation (3) with k both real and imaginary, which means that the dispersion relation
(4) must be solved for real energies in the form k = k(E). This is the opposite to
what is usually computed by ordinary band structure theory where one is interested
in finding all the real energies E = E (k) for a chosen real k-vector. Moreover in the
calculation of k = k(E) instead of solving the equation

det (Ho+ H1e ik + H_Ie- ik
- E) = 0 l (5)

which involves the use of a root tracking algorithm in the complex plane, we map the
problem onto an eigenvalue problem by defining the matrix 1{

1{ = ( -Hll(I~ - E) -HflH-I) , (6)

where I is the M x M identity matrix. The eigenvalues of 1{ are the roots eik and the
upper half of the eigenvectors of 1{ are the corresponding eigenvectors cPk.

The second part of the calculation involves computing an effective coupling matrix
between the surfaces of the scattering region. Note that the purpose of a scattering
technique is to calculate the S matrix between electrons in the leads. Therefore one is
not interested in information regarding the internal degrees of freedom of the scattering
region, but only in the resulting coupling between the external interfaces This can be
achieved by reducing the matrix HL - NT +HNT +HNT- R to an effective coupling matrix
Heff . Suppose the total number of degrees of freedom of the Hamiltonian HL - NT +
HNT + HNT- R is N, and the number of degrees of freedom of the lead surfaces M. One
can eliminate the i = 1 degree of freedom (not belonging to the external surfaces) by
reducing the N x N total Hamiltonian to an (N - 1) x (N - 1) matrix with elements

H(I) = H .. + HilHIj (7)
2) 1) E H

- 11

Repeating this procedure l times we obtain the "decimated" Hamiltonian at l-th order

H(l-l)H(l-l)
H(l) = H(l-l) + il lj (8)

2) 2) E _ H(l-l) ,
II
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and finally after N - M times, the effective Hamiltonian

H ( ) - ( HjJE) HLR(E))
eff E - HidE) Hi(E) (9)

In the equation (9) the matrices HL(E) and Hi(E) describe the intra-surface couplings
respectively in the left-hand side and right-hand side surfaces, and HLR(E) and HidE)
describe the effective coupling between these surfaces. From the above equations it
is clear that only matrix elements coupled to the eliminated degree of freedom are
redefined. This exact recursive technique therefore turns out to be very efficient in the
case of short-range interaction like the nearest neighbors tight-binding model considered
here. Two important considerations must be made. Firstly we note that both the
Green function calculation and the "decimation" require a fixed energy. Once this
has been set the calculation is exact and does not use any approximation. Secondly
the calculation of the Green function is completely decoupled by the calculation of
the effective Hamiltonian for the scatterer. This can allow very efficient numerical
optimizations, particularly in the study of disordered systems28 .

Once both the surface Green function of the leads g~ and the effective coupling
Hamiltonian Heff(E) are computed then the total Green function GS for the whole sys
tem (leads plus scattering region) are easily calculated by solving the Dyson's equation

(10)

Finally the scattering matrix elements are extracted from GS by using a generalization
of the Fisher-Lee relations29 .

For the case of leads made by carbon nanotubes a final observation must be con
sidered. The unit cell along the axis of the nanotube comprises two atomic planes,
and since the hopping matrix between sequential unit cells HI is therefore singular,
the dispersion relation cannot be calculated by using the equation (6). We avoid this
complication by projecting out the non-coupled degrees of freedom between sequen
tial cells before calculating the scattering channels. This has been done by using the
"decimation" technique described above.

CONDUCTANCE IN MULTI-WALL NANOTUBES

For an homogeneous system T(E) assumes integer values corresponding to the total
number of open scattering channels at energy E. For individual (n, n) "armchairll

tubes, this integer is further predicted to be even8 , with a conductance of 2Go near the
Fermi level. As an example, our results for the conductance G(E) and the density of
states of the (10,10) nanotube are shown in Fig. 3.

The main feature of an ('armchair" nanotube is its true mono-dimensional metallic
behavior. Note that the density of state shows mono-dimensional van Hove singularities
which are due to the presence of dispersion-less mini-bands. This is reflected in the
energy-dependent conductance which shows a typical step-like behavior. Such steps
appear whenever the energy crosses a new mini-band, and therefore correspond to the
van Hove singularities in fig 3a. It is crucial to note that in an infinite system every
scattering channel gives the same contribution Go to the conductance independently
from its dispersion and group velocity. The situation is rather different in an inhomoge
neous system, where the scattering of electrons from low dispersion to high dispersion
bands of different materials, can give rise to strong backward scattering and therefore
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Figure 3: Single-wall (10,10) nanotube. (a) Local density of states. (b) Conductance as a function of
energy. The Fermi level lies at 3.65 eV.

to a reduction of the conductance22 ,23,28. At the Fermi energy of an "armchair" nan
otube (in this case E F = 3.65 eV) only two scattering channels are present resulting
in a conductance 2Go, which remains constant in an energy interval of approximately
1.5eV.

Consider now multi-wall nanotubes. As observed in the introduction, in the ab
sence of inter-tube interactions, different tubes behave as conductors in parallel and
the conductances are simply additive. Therefore, since the position of the Fermi energy
does not change with the tube diameters we expect a conductance 2mGo for a multi-wall
nanotubes comprising m walls. Note also that the width of the energy region around
the Fermi energy where the conductance is 2Go, depends only weakly on the tube di
ameters. The situation changes drastically when inter-tube interaction is switched on.
In figures 4 and 5 we present the density of states and the conductance respectively for
a (lO,lO)@(15,15) and for a (5,5)@(lO,lO)@(15,15) multi-wall nanotube.

In the figures we restricted the energy window to the region where the single-wall
armchair nanotubes present conductances of 2Go. The main feature of both the figures
is the presence of pseudo-gaps18 which lower the conductance from the expected value
2mGo- In the case of a double-wall nanotube, this results in two regions where the
conductance passes from 4Go to 2Go, while in triple-wall nanotube the values 6Go, 4Go
and 2Go are possible. Nevertheless both these results are still not consistent with the
experimental observations of IGo and O.5Go13 .

It is important to note that the presence of energy pseudo-gaps does not only
lowers the conductance but also gives rise to two important effects. First it changes
drastically the dispersion of the mini-bands close to the gaps. At the edge of the gaps
in fact the dispersion passes from a linear to an almost dispersion-less parabolic-like
structure. This is shown in figure 6 where we present the band structure along the
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Figure 4: (a) Local density of states for a double-wall (lO,lO)@(15,15) nanotube. (b) Conductance as
a function of energy.
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Figure 5: (a) Local density of states for a triple-wall (5,5)@(lO,lO)@(15,15) nanotube. (b) Conductance
as a function of energy.
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direction of the tube axis for a double-wall (lO,lO)@(15,15) nanotube (b) together with
the band structure of a single-wall (15,15) nanotube.

4

3.8

3.4

3.2

r Ar

I

A
Figure 6: (a) Band structure along the tube axis for a (15,15) nanotube, with Ep = 3.65 eV. (b) Band
structure along the tube axis for a (10,lO)@(15,15) nanotube.

Secondly the amplitude of the wave-function across the nanotubes changes. Far
from the gaps, where the effects of the inter-tube interaction are weak, the wave
function is expected to have a uniform distribution across the different walls com
posing the nanotube. This is what is found in the case of non-interacting walls,
whereas in the vicinity of a pseudo-gap, the distribution changes dramatically and
the amplitude may be enhanced along some walls and reduced along some others. To
demonstrate this effect in figure 7 we present the partial conductance across the two
walls composing a (10,10)@(15,15) nanotube and across the three walls composing a
(5,5)@(10,10)@(15,15) nanotube. The partial conductance is defined as the projection
of the total conductance for an infinite multi-wall tube onto the degrees of freedom
describing the individual walls. From the figure it is very clear that the amplitude of
the wave-function (which is proportional to the partial conductance) is not uniform
across the structure and depends critically on the energy.

Both the change in the dispersion and the non-uniform distribution of the am
plitude of the wave-function across the tubes have drastic effects on the transport of
heterogeneous systems, because it creates strong inhomogeneities along the structure,
and therefore strong backward scattering. This aspect, which occurs in a multi-wall
nanotube when one of the innermost walls closes, will be discussed in the next section.
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Figure 7: Partial conductance of (a) (10,10)@(15,15) and (b) (5,5)@(lO,lO)@(15,15) nanotube. The
solid line, dotted and dashed lines represent the partial conductance respectively onto the innermost,
the medium (only in the case of (5,5)@(IO,IO)@(15,15)) and the outermost tube. Note that within the
pseudo-bandgaps the conductance does not distribute uniformly onto the different tubes.

TRANSPORT IN INHOMOGENEOUS MULTI-WALL NANOTUBES

In this section we will use the ideas developed above to describe the experiments of
reference 13. Note that for inhomogeneous systems, where multi-wall nanotubes are
contacted to the voltage/current probes, the conductance quantization in unit of 2Go
which we found also for multi-wall nanotube in presence of inter-wall interaction is
evidently violated and fractional values of the conductance are allowed. One of the
difficulties of the experiments, which use gold as one electrode and mercury as the other,
is that not all tubes make contact with the electrodes. We have considered two different
scenarios and have found that agreement with the experiments is obtained when we
assume that only the outermost tube is in contact with the gold electrode, whereas the
number of walls in contact with the mercury depends on the depth at which the tube
is immersed into the liquid. This latter assumption may seem surprising, because the
mercury does not wet the inner tubes. Nevertheless we believe that at equilibrium,
the inter-tube interaction allows a uniform distribution of the chemical potential across
the cross-section of the whole structure and therefore in the linear-response regime, the
scattering problem reduces to a semi-infinite single-wall nanotube (the one in direct
contact with gold) attached to a scattering region in which a variable number of walls
are present (see fig.Sa). Moreover a close analysis of the inter-tube matrix elements
shows that these are of the same order of magnitude as the intra-wall ones. This means
that electron transport between different walls may be efficient, as well as the electron
feeding of the innermost walls from the electrons reservoirs.

Consider first the case in which only the outermost tube makes contact with the
gold electrode. We argue that the step-like dependence of the conductance on the
immersion depth is due to the fact that the scattering region makes contact with the
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Figure 8: (a) Schematic geometry of the system in which only the outermost tube is contacted with
the gold electrode for different immersion depths. (b)-(d) Conductance as a function of energy for
the system of (a) at the immersion depths HgI, Hg2, and Hg3. E is given with respect to EF of the
pristine (undoped) nanotube.

mercury reservoir via a multi-wall semi-infinite nanotube whose number of walls varies
and depends on the immersion of the structure. For small immersion depths (such
as Hgl in fig.8a), only the outermost tube is in contact with mercury, because it is
the only one with an end below the mercury level. A further lowering of the gold
tip (to depths such as Hg2 and Hg3 in fig.8a) will sequentially place more inner walls
into electrical contact with the mercury, thereby changing the conductance. We notice
that the conductance of such a structure cannot be larger than that of the single-wall
nanotube, which is the only tube in contact with the gold electrode.

In figure 8b we present the conductance as a function of energy for the inhomo
geneous structure described in figure 8a. In all three cases, the simulated structure
makes contact with the upper Au reservoir via a (15,15) nanotube, which forms the up
per external lead, whereas the lower external lead contacting the Hg comprises either
a single, double or triple-wall nanotube. The solid curve corresponds to a structure
formed from a 200 atomic plane (AP) (5,5)@(10,10)@(15,15) triple-wall region, below
which is attached to a 200 AP (10,10)@(15,15) double-wall region. The ends of the
outer (15,15) nanotube are connected to semi-infinite (15,15) nanotubes, which form
the external leads. The dashed curve corresponds to a structure formed from a 200 AP
(5,5)@(10,10)@(15,15) triple-wall region. The upper end of the outer tube attached
to a semi-infinite (15,15) nanotube, which forms the external lead contacting the Au
reservoir. The lower end of the (10,10) and (15,15) nanotubes continue to infinity, and
form a (10,10)@(15,15) external contact to the Hg reservoir. Finally the dot-dashed
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line shows the conductance of a (5,5)@(lO,lO)@(15,15) nanotube, which at the lower
end makes direct contact with the Hg and at the upper end, the outer tube continues
to infinity, thereby forming a (15,15) external contact to the Au reservoir. These situa
tions correspond to immersion of the tube into the mercury at positions Hg1, Hg2 and
Hg3 respectively, where either one wall and two walls are in electrical contact with the
mercury.

In all the simulations, the ends of the finite-length tubes are left open and we do
not include capping layers. We believe that the capping layers are not crucial to the
description of the transport properties of inhomogeneous multi-wall nanotubes, since
these are mainly determined by the mis-match of wave-vectors between different regions.
Figure 8b shows clearly that in an energy window of about O.05eV (indicated by vertical
dashed lines), the conductance for the first structure is approximately O.5Ca, while for
the latter two is of order ICa. Note that such energy window is two times larger than
the bias used in the experiments and also much larger than room temperature. This
suggests that these results are quite robust and will survives both at room temperature
and moderate biases. This remarkable result is in excellent agreement with the recent
experiments of reference 13.

The scattering in such an inhomogeneous structure arises from the reasons pointed
out in the previous section. In the energy window considered in fact the infinite
(5,5)@(10,10)@(15,15) presents a large pseudo-gap with conductance 4Go. We therefore
expect that at both the interfaces of the (5,5)@(10,10)@(15,15) region with respectively
the (10,10)@(15,15) region and the (15,15) tube, the mismatch of either the transverse
components of the wave-function cPk and the longitudinal k-vectors will be large. This
gives rise to the strong suppression of the conduction observed in the experiments. In
figure 9 we present the conductance as a function of immersion depth in mercury for
the structure described above. The conductance is calculated at zero-temperature in
the zero bias limit and the energy has been set in the middle of the marked region of
figure 8a (3.825eV). Note again that the agreement with the curve of experiments of
reference 13 is very good.
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Figure 9: Conductance as a function of immersion depth. The solid curve corresponds to the structure
of figure Sa and the dashed curve to that of figure lOa.
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We now consider a second possible scenario, in which three tubes are in direct
contact with the gold electrode. In this case the electrons are fed from gold into the
structure directly along all the tubes. This contact can be simulated by a semi-infinite
(5,5)@(10,10)@(15,15) nanotube with uniform chemical potential across the tubes. The
structure considered is presented in figure lOa. In this case the upper bound of the
conductance is no longer fixed by the single-wall tube to be 2Go but can be as large
as 6Go and depends on the number of walls contacting the mercury. In figure lOb we
show the conductance as a function of energy respectively for a 200 AP (10,10)@(15,15)
nanotube sandwiched between a (15,15) and a (5,5)@(10,10)@(15,15) nanotube leads,
for (10,10)@(15,15) nanotube lead in contact with a (5,5)@(IO,10)@(15,15) nanotube
lead, and for an infinite (5,5)@(10,10)@(15,15) nanotube. This again corresponds to
the different levels of immersion HgI, Hg2 and Hg3 in (Fig. lOa). Note that in the
case in which the (5,5)@(10,l0)@(15,15) nanotube is in direct contact with both the
gold and the mercury electrodes its conductance corresponds to the number of opening
scattering channels for the infinite triple-wall system.

Au (a) 6

5

4
0

~ 3
Hg3 \j

2

Hg2
0
0.05

Hgl

(b)

---./
./--.--.--

- - Hg3

-- Hg2
-- HgI

0.10 0.15 0.20
E [eV]

Figure 10; (a) Schematic geometry of the system in which three tubes tubes are contacted with the
gold electrode for different immersion depths. (b) Conductance as a function of energy for the system
of (a). E is given with respect to EF of the pristine (undoped) nanotube.

Figure 10 shows that when all three tubes are electrically connected to the gold
electrode, a much larger increase in the conductance occurs when a new wall is lowered
below the mercury level, although this is still smaller than the value of 2Go, obtained
for completely isolated tubes. In this case, corresponding to the different value of the
immersion depth, we expect the conductance to be respectively lGo, 2Go and 4Go.

The large difference between the transport of the structures in figures 8a and lOa is
therefore crucially dependent on the number of tubes which make a direct contact with
the gold electrode. At the moment a complete description of the nanotube/metal inter
face is not available, although it will deserve further investigation both experimentally
and theoretically.
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CONCLUSIONS

To conclude we have presented a fully quantum scattering technique which yields the
S matrix of inhomogeneous multi-wall nanotubes. We have shown that the inter-tube
interaction drastically modifies transport, not only by opening pseudo-gaps close to the
Fermi energy, but also by redistributing the amplitude of the transverse component
of the wave-function across the multi-wall structure. These effects, when combined
together, form a convincing explanation of puzzling experiments in which non-integer
values of conductance have been found in multi-wall nanotubes13 . To arrive at this
quantitative description of the experiments, we have explored several possibilities re
garding on the nature of the nanotubejmetal interfaces. Only those calculations in
which the outermost tube is in direct contact with the gold electrode showed good
agreement with the experiments.
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