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Note S1: Computational details

We performed first-principles calculations based on density functional theory (DFT)S1 as

implemented in Vienna ab initio simulation package (VASP)S2. The exchange-correlation

(XC) functional was treated within the generalized gradient approximation of Perdew-

Burke-Ernzerhof (PBE)S3 with noncollinear spin polarization.S4 The electronic wavefunc-

tions were expanded by planewave basis with kinetic energy cutoff of 400 eV. We employed

the projector-augmented wave pseudopotentialsS5,S6 to describe the valence electrons, and

Grimme-D2 van der Waals correctionS7 to describe long range interaction between graphene

and WSe2. The sufficiently large vacuum region was included to mimic 2D layered or slab

structure in periodic cells.

To construct supercell configurations with various twist angles, we employed accidental

angular commensuration method.S8,S9 In the hexagonal two-dimensional materials, any su-

percell structrue (m,n) can be defined by two lattice vectors a(m,n) = ma+nb and b(m,n) =

−ma+(m+n)b with a corresponding skewed angle θ(m,n) = tan−1(
√
3m/(2n+m)). Based

on the equilibrium lattice constants of graphene (aGra = 2.46 Å) and WSe2 (a
WSe2 = 3.32 Å),

we constructed supercells of graphene (m,n) and WSe2 (m′, n′), and stacked them to make

heterostructures while keeping their lattice mismatch below 2%. The twist angle is obtained

by θ = |θGra
(m,n)−θ

WSe2
(m′,n′)|, and the lattice constants of heterostructure was used to be the same

value as aGra
(m,n). Within the given lattice constants, the atomic positions were fully relaxed

through DFT calculation. The detailed structural parameters and corresponding k-mesh

gird (Nk ×Nk) of the heterostructures are summarized in Table S1.

The band (n) and momentum (k) resolved spin angular momentum distributions are

calculated by the expectation value of the spin angular momentum operator, that is,∑
α ⟨ψα

n,k|σ|ψα
n,k⟩, where σ is the Pauli spin matrix vector, and ψα

n,k is an wavefunction

projected on atom site α.
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Note S2: Quantum transport calculation details

The quantum transport calculations are based on a periodic tight-binding model for the

proximitized graphene Dirac states. The Hamiltonian readsS10

H =
∑
⟨ij⟩,σ

ĉ†iσtĉjσ +
∑
i,σ

ĉ†iσ∆ξci ĉiσ +

2iλR
3

∑
⟨ij⟩,σσ′

ĉ†iσ[e
−iŝzϕ/2(ŝ× d̂ij) · ẑeiŝzϕ/2]σσ′ ĉjσ

+
i

3

∑
⟨⟨ij⟩⟩,σσ′

ĉ†iσ

[
λciI√
3
νijsz + 2λciPIA(ŝ× D̂ij) · ẑ

]
σσ′

ĉjσ, (S1)

where ĉ†iσ (ĉiσ) creates (annihilates) a pz electron with spin σ at site i, t is the nearest neigh-

bor hopping parameter and ∆ is the sublattice asymmetry with ξA(B) = ±1. The remaining

parameters λR, λ
A,B
I and λA,B

PIA collectively account for the proximity-induced SOC and de-

scribe, respectively, the Rashba SOC, the sublattice resolved intrinsic SOC and pseudospin

inversion asymmetry induced terms. In addition νij = +1(−1) describes the relative phase

acquired by an electron as it travels from sites i and j in a clockwise (counterclockwise)

sense and d̂ij and D̂ij are, respectively, the nearest neighbor and next-nearest neighbor unit

vectors connecting sites i and j. Finally, ŝ is the vector of spin Pauli matrices and ϕ is the

Rashba angle parameter accounting for the non-orthogonal spin-momentum lockingS11–S14.

The above Hamiltonian can be Fourier transformed to momentum space, from where eigen-

states and energy bands relevant for the linear response formula are obtained.

Figure S5 displays the energy dependence of the spin Hall conductivity and Rashba-

Edelstein efficiency (up to a factor of vF ) for all twist angles considered in this work. From

Fig. S5(a) it is clear that the spin Hall conductivity is maximized at 30◦ twisting at all

energies. This implies that the Rashba-like spin texture in this situation is beneficial to

the spin Hall effect. The Rashba-Edelstein efficiency in Fig. S5(b) shows that the maximum

efficiency varies with energy, where maximum efficiency occurs at the vicinity of 30◦ twisting

at low doping levels.

Figure S6 is a study on the relevance of the proximity-induced pseudospin inversion asym-

metry on the charge-to-spin conversion. We considered two situations, where we artificially

set λA,B
PIA to zero or maintained its value to that obtained by fitting the first-principles ground

states. Panels (a) and (b) show that the same behavior is expected regardless of the λA,B
PIA we
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assume. The same conclusion is valid for all twist angles we considered (two sample twist

angle cases are shown). Hence, the pseudospin inversion asymmetry SOC due to procimity-

effects is not relevant to charge-to-spin conversion in Gra/TMDC heterostructures.

Figure S7 is a sample calculation showing that the valley Zeeman SOC parameter is

detrimental to the charge-to-spin conversion efficiencies. In these calculations, we artifi-

cially increase the absolute values of the parameters λA,B
I while maintaining the remaining

parameters fixed at those corresponding to the 0◦ twisted structure. As is seen, the maxi-

mum efficiency decays and is shifted to higher energies at larger λV Z for both spin Hall and

Rashba-Edelstein effects. The energy shift is due to the band structure modification associ-

ated with λA,B
I , while the suppression is mainly due to the larger longitudinal conductivity

σxx at larger λV Z . It is worth emphasizing that these results are valid in the weak disorder

limit, where the constant Γ approximation provides a good description. In the strong disor-

der limit, the relation between efficiency and valley-Zeeman SOC is qualitatively distinct.

Note S3: Crossover of Spin Hall and Rashba-Edelstein dominated charge-to-spin

conversion: A illustrative calculation.

As pointed out in the main text, although vertex corrections are fundamentally necessary

to fully address the SHE in proximitized-graphene, we compute the twisted angle dependence

of the disorder-free spin Hall conductivity as a reference for future calculations including

disorder. In this spirit, we also find it useful to analyse the crossover between the SHE and

(U)REE dominated CSC with spectral broadening, twist angle and doping levels, which is

presented in this section for illustration purposes.

To facilitate this study we define a CSC efficiency polarization as ξ(E, θ) = (|θSHE| −

|α|)/(|θSHE| + |α|) where α =
√
α2
REE + α2

UREE, and tracked its evolution with the band

broadening Γ in Fig. S8. For small band broadening (Γ = 0.1 meV), ξ is mostly negative for

all energies and twist angles, i.e., CSC is dominated by the REEs [See Fig. S8(a)]. At large

spectral broadening (Γ = 0.50 meV), ξ turned positive throughout, as shown in Fig. S8(c),

indicating that SHE dominates the CSC. We identify an intermediate crossover broadening

(Γ = 0.25 meV), the dominating mechanism for CSC strongly depends on the twist angle

and doping levels, being mostly due to SHE close to 30◦ twisting and to REE at higher

doping levels for twist angles in the interval 5◦ − 25◦, as shown in Fig. S8(b). The strong Γ
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dependence of ξ originates from the contrasting Fermi sea and Fermi surface nature of SHE

and REEs, respectively. Here, δsx,y and σxx are both Fermi surface effects, such that their

dependences on Γ compensate and give rise to an α that is approximately independent of

Γ. On the contrary, the SHE is approximately independent of Γ because it originates from

the Fermi sea. Hence, σz
yx does not compensate the Γ dependence of σxx. These findings

shed light on the disparate dominant CSC mechanism reported across different proximitized

graphene Hall bar devices and might help guiding future work in this direction.
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TABLE S1. Structural parameters of the twisted graphene/WSe2 heterostructure. The lattice

constants of heterostructure was used to be the same value as aGra
(m,n), and the residual strain was

only applied to the WSe2 (m′, n′).

θ (◦) Strain (%) Nk aGra
(m,n) m n θGra

(m,n) aWSe2
(m′,n′) m′ n′ θWSe2

(m′,n′)

0.00 1.20 6 9.84 4 0 0.00 9.96 3 0 0.00

5.21 -0.98 3 15.36 5 2 16.10 15.21 4 1 10.89

13.07 0.29 2 20.14 7 2 12.22 20.19 4 3 25.29

16.58 -0.98 2 23.47 9 1 5.21 23.24 5 3 21.79

19.11 -1.98 4 13.02 4 2 19.11 13.28 4 0 0

23.41 2.00 4 14.76 6 0 0 14.47 3 2 23.41

27.00 -0.98 2 23.47 6 5 27.00 23.24 7 0 0.00

30.00 0.18 2 17.22 7 0 0.00 17.25 3 3 30.00
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FIG. S1. (a–h) Crystal structure of twisted graphene/WSe2 heterostructures with a total of 8 twist

angles. Brown, grey, and green spheres indicate carbon, tungsten, and selenium atoms, respectively.

In each figure, red and green arrows show the armchair directions of graphene and WSe2.
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FIG. S2. (a–h) Electronic structure of twisted graphene/WSe2 heterostructures without spin-orbit

interaction. In (a), inset shows small band gap opening at the Dirac point.
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FIG. S3. (a–h) Spin-orbit proximitized carbon pz states of twisted graphene/WSe2 heterostruc-

tures. The colored dots show the energy eigenvalues calculated by DFT, which were fitted by the

model defined as the Eq. (1) in the main manuscript, plotted with black solid lines. In (a), colorbox

indicates expectation value of out-of-plane spin components.
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FIG. S4. (a–h) In-plane spin angular momentum distributions of the heterostructures with twist

angles from 0◦ to 30◦. The purple and cyan arrows indicate the (CB1) lowest and (CB2) second

lowest conduction bands (two upper Dirac bands) with opposite spin-chiralities. The lowest and

second highest valence bands (two lower Dirac bands) have exactly the same spin-chiralities with

those of the CB1 and CB2, respectivley. In each figure, we represented Rashba phase angle ϕR,

which induces deviations from the ideal spin-momentum locking (highlighted by dashed circles).
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FIG. S5. Energy resolved (a) spin Hall conductivity and (b) Rashba-Edelstein efficiency at several

twist angles.
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FIG. S6. Dependence of the (a) spin Hall conductivity and (b) Rashba-Edelstein efficiency with the

pseudospin inversion asymmetry parameters λA,B
PIA, represented collectively as λPIA, at two sample

twist angles. Here, λPIA ̸= 0 means the calculation was performed with full λA,B
PIA value as fitted

from first-principles.
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FIG. S7. Evolution of spin Hall and Rashba-Edelstein efficiencies with the valley Zeeman parame-

ter. Here, all remaining parameters are fixed and assumed to coincide with those of the 0◦ twisted

structure.
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FIG. S8. Evolution of the CSC diagram with the band broadening: (a) Γ = 0.10 meV, (b) Γ = 0.25

meV and (c) Γ = 0.50 meV. Here, ξ(E, θ) = (|θSHE| − |α|)/(|θSHE| + |α|) is a CSC efficiency

polarization, where α =
√
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dominant CSC through SHE (REE or UREE). The contour in panel (b) separates dominating SHE

and REE/UREE scenarios where ξ = 0.
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